DS1 /118

Exercice 1 /37

On considère l'application $\varphi:]0, +\infty[\to \mathbb{R}, x \mapsto e^x - xe^{\frac{1}{x}}]$. On admet 2 < e < 3.

Partie I : Étude de la fonction φ

- 1. (*) Montrer que φ est de classe \mathcal{C}^3 sur $]0, +\infty[$, calculer, pour tout x de $]0, +\infty[$, $\varphi'(x)$ et $\varphi''(x)$ et montrer : $\forall x \in]0, +\infty[$, $\varphi'''(x) = e^x + \frac{3x+1}{x^5} e^{\frac{1}{x}}.$
 - 2 pts : φ est de classe \mathcal{C}^3 sur $]0,+\infty[$
 - 1 pt : $\varphi': x \mapsto \mathbf{e}^x + \left(\frac{1}{x} 1\right) \mathbf{e}^{\frac{1}{x}}$
 - 1 pt : $\varphi'' : x \mapsto e^x \frac{1}{x^3} e^{\frac{1}{x}}$
 - 1 pt : $\varphi''' : x \mapsto e^x + \frac{3x+1}{x^5} e^{\frac{1}{x}}$
- 2. (*) Étudier le sens de variation de φ'' et calculer $\varphi''(1)$. En déduire le sens de variation de φ' , et montrer : $\forall x \in]0, +\infty[, \varphi'(x) \geqslant e$.
 - 1 pt : pour tout $x \in]0, +\infty[$, $\varphi'''(x) > 0$ donc φ'' est strictement croissante sur $]0, +\infty[$
 - 1 pt : $\varphi''(1) = 0$
 - 1 pt:

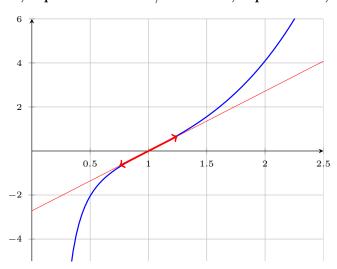
x	0		1		+∞
Signe de $\varphi''(x)$		-	0	+	
Variations de φ'	+∞		* e /		$+\infty$

- 1 pt : φ' admet un minimum en 1 et $\varphi'(1) = e$ donc pour tout $x \in [0, +\infty[, \varphi'(x)]) = e$
- 3. (*) Déterminer la limite de $\varphi(x)$ lorsque x tend vers 0 par valeurs strictement positives.
 - 1 pt : $\lim_{X \to +\infty} \frac{\mathbf{e}^X}{X} = +\infty$ par croissances comparées
 - 1 pt : $\lim_{x\to 0^+} \varphi(x) = -\infty$
- 4. Déterminer la limite de $\frac{\varphi(x)}{x}$ lorsque x tend vers $+\infty$, et la limite de $\varphi(x)$ lorsque x tend vers $+\infty$.
 - 1 pt : $\lim_{x \to +\infty} \frac{\varphi(x)}{x} = +\infty$
 - 1 pt : $\lim_{x \to +\infty} \varphi(x) = +\infty$

- 5. On admet : $15 < \varphi(3) < 16$. Montrer : $\forall x \in [3, +\infty[, \varphi(x) \ge ex]$. On note $\mathcal C$ la courbe représentative de φ .
 - 1 pt : On note $h: x \mapsto \varphi(x) \mathbf{e} x$. La fonction h est dérivable sur $]0, +\infty[$.
 - 1 pt : $\forall x \in [0, +\infty[, h'(x) \ge 0.$
 - 1 pt : $\forall x \in [3, +\infty[, h(x) \ge h(3)]$
 - 1 pt : $h(3) = \varphi(3) 3e > 15 3e > 0$
- 6. Montrer que C admet un unique point d'inflexion, déterminer les coordonnées de celui-ci et l'équation de la tangente en ce point.
 - 1 pt : La fonction φ'' est négative sur]0,1] et positive sur $[1,+\infty[$, la fonction φ change donc de convexité en 1, seul point d'inflexion de la courbe représentative de φ
 - 1 pt : La courbe représentative de φ admet pour point d'inflexion, le point de coordonnées (1,0)
 - 1 pt : L'équation de la tangente à la courbe représentative de φ en 1 est : $y = \varphi'(1)(x-1) + \varphi(1) = \mathbf{e}(x-1)$
- 7. Dresser le tableau de variations de φ , avec les limites en 0 et en $+\infty$, et la valeur en 1. Tracer l'allure de \mathcal{C} et faire apparaître la tangente au point d'inflexion.
 - 1 pt:

x	0	1	+	-∞
Signe de $\varphi'(x)$		+	+	
Variations de φ	$-\infty$		+	-∞

• 4 pts : (1 pt tangente, 1 point concavité/convexité, 1 pt limites, 1 pt croissance)



Partie II: Étude d'une suite

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et : $\forall n\in\mathbb{N}, u_{n+1}=\varphi(u_n)$.

8. (*) Montrer que, pour tout n de \mathbb{N} , u_n existe et $u_n \geqslant 3 e^n$. (on pourra utiliser les résultats de la **Partie I**)

• 1 pt : initialisation

• 2 pt : hérédité

0 pt en cas de mauvaise rédaction de la récurrence

- 9. Montrer que la suite (u_n) est strictement croissante et que u_n tend vers $+\infty$ lorsque n tend vers l'infini.
 - 1 pt : $u_n \in [3, +\infty[$ donc on peut utiliser la question 5.
 - 1 pt : $u_{n+1} = \varphi(u_n) \geqslant \mathbf{e}u_n \geqslant u_n$
 - 1 pt : $\forall n \in \mathbb{N}, \ u_n \geqslant 3 \, \mathbf{e}^n \ \mathbf{donc} \ \lim_{n \to +\infty} \, u_n = +\infty \ \mathbf{par} \ \mathbf{th\acute{e}or\grave{e}me} \ \mathbf{de} \ \mathbf{comparaison}$
- 10. (*) Écrire un programme **Python** qui affiche et calcule le plus petit entier n tel que $u_n \ge 10^3$.

```
import numpy as np
import numpy as nump
```

- 1 pt : importation numpy
- 1 pt: initialisation n et u
- 1 pt:

```
4 while u < 10**3 :
```

- 1 pt : mise à jour u
- 1 pt : mise à jour n
- 1 pt:

```
7 print(n)
```

0 en cas d'erreur d'indentation

Exercice 2 /13

Écrire de manière mathématique les propositions suivantes ainsi que leur négation. On évaluera ensuite la véracité de ces propositions.

- 1. (*) Tout nombre réel positif est inférieur ou égal à son carré.
 - 1 pt : Cette proposition s'écrit de la façon suivante : $\forall x \in \mathbb{R}_+, \ x \leqslant x^2$
 - 1 pt : Sa négation est : $\exists x_0 \in \mathbb{R}_+, x_0 > x_0^2$
 - 1 pt : En choisissant $x_0 = \frac{1}{2}$, on remarque : $x_0 > x_0^2$. Ainsi la négation de la proposition 1. est vraie. La proposition 1. est donc fausse.
- 2. Tout réel positif de racine carrée supérieure ou égale à 2, est lui-même supérieur ou égal à 4.
 - 1 pt : Cette proposition s'écrit de la façon suivante : $\forall x \in \mathbb{R}_+, \ (\sqrt{x} \ge 2) \Rightarrow (x \ge 4)$
 - 1 pt : Sa négation est : $\exists x_0 \in \mathbb{R}_+, \ (\sqrt{x_0} \geqslant 2)$ ET $(x_0 < 4)$
 - 2 pts : démonstration de 2.
 - × 1 pt : structure d'implication
 - $_{ imes}$ 1 pt : par croissance de la fonction carré sur \mathbb{R}_{+}
- 3. Le trinôme $z^2 3z + 2$ admet une racine réelle.
 - 1 pt : Cette proposition s'écrit de la façon suivante : $\exists z_0 \in \mathbb{R}, \ z_0^2 3z_0 + 2 = 0$
 - 1 pt : Sa négation est : $\forall z \in \mathbb{R}, z^2 3z + 2 \neq 0$
 - 1 pt : En choisissant $z_0 = 1$, on remarque que la proposition 3. est vraie.
- 4. La suite $(2n \sqrt{5})_{n \in \mathbb{N}}$ est une suite arithmétique.
 - 1 pt : Cette proposition s'écrit de la façon suivante : $\exists r \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ 2(n+1) \sqrt{5} = 2n \sqrt{5} + r$
 - 1 pt : Sa négation est : $\forall r \in \mathbb{R}, \ \exists n_0 \in \mathbb{R}, \ 2(n_0+1) \sqrt{5} \neq 2n_0 \sqrt{5} + r$
 - 1 pt : La suite $(2n \sqrt{5})_{n \in \mathbb{N}}$ est arithmétique de raison 2

Exercice 3 /14

Dans les paires suivantes, les propositions (à paramètre) sont-elles équivalentes pour toute valeur des paramètres? Si ce n'est pas le cas, donner les implications valables. Toute réponse devra être justifiée.

- 1. Paramètre : $x \in \mathbb{R}$.
 - Propositions: $(x^3 \leq 3)$ et $(|x| \leq 3^{\frac{1}{3}})$.
 - 3 pts : en choisissant $x_0 = -3$, on remarque que les deux propositions ne sont pas équivalentes
 - \times 1 pt : $(x_0^3 \le 3)$ est vraie
 - imes 2 pts : $\left(|x_0|\leqslant 3^{rac{1}{3}}
 ight)$ est fausse (dont 1 pt pour la stricte croissance de \exp sur $\mathbb R$)
 - 1 pt : L'implication suivante est fausse : $(x^3 \le 3) \Rightarrow (|x| \le 3^{\frac{1}{3}})$.
 - 2 pts : $(|x| \le 3^{\frac{1}{3}}) \implies (x^3 \le 3)$
 - × 1 pt : structure de démonstration de l'implication
 - \times 1 pt : par croissance de la fonction $x\mapsto x^3$ sur $\mathbb R$

- 2. Paramètre : $x \in \mathbb{R}_+^*$. Propositions : (x < 1) et $(x^2 < x)$.
 - 1 pt : les deux propositions sont équivalentes pour tout $x \in \mathbb{R}_+^*$
- 3. Paramètres : $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in \mathbb{R}^n$. Propositions : $(x_1^2 + \dots + x_n^2 = 0)$ et $(\forall i \in [1, n], x_i = 0)$
 - 3 pts : les deux propositions sont équivalentes pour tout $n \in \mathbb{N}^*$ et tout $(x_1, \dots, x_n) \in \mathbb{R}^n$
 - × 1 pt : structure de démonstration de la double implication
 - \times 1 pt : (\Rightarrow)
 - × 1 pt : (⇐)
- 4. Paramètre : $(x, y) \in \mathbb{R}^2$. Propositions : $(x^2 + y^2 > 1)$ et (|x| > 1) 0U |y| > 1.
 - 1 pt : en choisissant $x_0 = y_0 = 1$, on remarque que les deux propositions ne sont pas équivalentes
 - 1 pt : L'implication suivante est fausse : $(x^2 + y^2 > 1) \Rightarrow (|x| > 1 \text{ OU } |y| > 1)$
 - 2 pts: $(|x| > 1 \text{ OU } |y| > 1) \Rightarrow (x^2 + y^2 > 1)$
 - × 1 pt : structure de démonstration de l'implication et disjonction de cas
 - × 1 pt : reste de la démonstration

Exercice 4 /7

Pour chacune des propositions $P(\cdot)$ ci-dessous, déterminer si la proposition $Q(\cdot)$ est nécessaire, suffisante, les deux à la fois ou rien du tout (réponse à justifier).

- 1. (*) Paramètre : $(x,y) \in \mathbb{Z}^2$. Propositions : P(x,y) : $(x^2-y^2=0)$ et Q(x,y) : (x=y).
 - 1 pt : La proposition Q(x,y) n'est pas une condition nécessaire à P(x,y). En effet, en choisissant $x_0 = 1$ et $y_0 = -1, \ldots$
 - 1 pt : La proposition Q(x,y) est une condition suffisante à P(x,y).
- 2. Paramètre : $(a, b, c) \in \mathbb{R}^3$. Propositions : P(a, b, c) : (|a + b + c| = 0) et Q(a, b, c) : (a = b = c = 0).
 - 1 pt : La proposition Q(a,b,c) n'est pas une condition nécessaire à P(a,b,c). En effet, en choisissant $a_0 = b_0 = 1$ et $c_0 = -2, \ldots$
 - 1 pt : La proposition Q(a,b,c) est une condition suffisante à P(a,b,c).
- 3. Paramètres : $(u_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ et $a \in \mathbb{R}$. Propositions : $P((u_n)_{n\in\mathbb{N}}, a)$: (la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison a) et $Q((u_n)_{n\in\mathbb{N}}, a)$: $(\forall n \in \mathbb{N}, u_{n+2} - u_{n+1} = u_{n+1} - u_n)$.
 - 1 pt : La proposition $Q((u_n)_{n\in\mathbb{N}}, a)$ est une condition nécessaire à $P((u_n)_{n\in\mathbb{N}}, a)$.
 - 2 pts: La proposition $Q((u_n)_{n\in\mathbb{N}}, a)$ n'est pas une condition suffisante à $P((u_n)_{n\in\mathbb{N}}, a)$. En effet, en choisissant a=0 et la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\ u_n=n,\ldots$

Exercice 5 /26

Résoudre les équations et inéquations suivantes, d'inconnue $x \in \mathbb{R}$.

1.
$$5^{3x+4} - 2^{2x-3} = 0$$

3.
$$\sqrt{-x^2+x+3} \leqslant 2x+1$$

2.
$$|x+1| + |2x+1| = 0$$

4.
$$|3-2x| \geqslant \sqrt{-2x^2+x+1}$$

1. • 1 pt :
$$\mathcal{D}_{(1)} = \mathbb{R}$$

- 1 pt : écriture sous forme exp / ln
- 1 pt : injectivité de \exp sur $\mathbb R$
- 1 pt : l'ensemble des solutions de (1) est : $\{-\frac{4\ln(5) + 3\ln(2)}{3\ln(5) 2\ln(2)}\}$.
- 2. 1 pt : $\mathcal{D}_{(2)} = \mathbb{R}$
 - 1 pt : obtention de la disjonction de cas $x \le -1$, $x \in]-1,-\frac{1}{2}]$, $x > -\frac{1}{2}$.
 - 3 pts : l'ensemble des solutions de (2) est \emptyset (1 pt par cas)
- 3. 2 pts : $\mathcal{D}_{(3)} == [x_1, x_2] = [-\frac{1+\sqrt{13}}{2}, \frac{-1+\sqrt{13}}{2}]$
 - 2 pts : obtention de la disjonction de cas $x \in [x_1, -\frac{1}{2}[, x \in [-\frac{1}{2}, x_2]$ (démonstration de $-\frac{1}{2} \in [x_1, x_2]$)
 - 1 pt : L'inéquation (3) n'admet donc aucune solution sur $[x_1, -\frac{1}{2}[$.
 - 1 pt : (3) $\Leftrightarrow 0 \leqslant 5x^2 + 3x 2$ (par stricte croissance de la fonction carré sur \mathbb{R}_+)
 - 1 pt : les racines de $5X^2 + 3X 2$ sont -1 et $\frac{2}{5}$
 - 1 pt : Sur l'intervalle $[-\frac{1}{2},x_2]$, l'ensemble des solutions de (3) est donc : $(]-\infty,-1] \cup [\frac{2}{5},+\infty[) \cap [-\frac{1}{2},x_2]$
 - 1 pt: $(]-\infty,-1] \cup [\frac{2}{5},+\infty[) \cap [-\frac{1}{2},x_2] = [\frac{2}{5},+\infty[] \cap [-\frac{1}{2},x_2]$
 - 2 pts : $[\frac{2}{5}, +\infty[\cap [-\frac{1}{2}, x_2] = [\frac{2}{5}, x_2]$ (démonstration de $\frac{2}{5} \in [-\frac{1}{2}, x_2]$)
 - 1 pt : l'ensemble des solutions de (3) est : $[\frac{2}{5}, x_2] = [\frac{2}{5}, \frac{-1+\sqrt{13}}{2}]$.
- 4. 2 pts : $\mathcal{D}_{(4)} = [-\frac{1}{2}, 1]$
 - \times 1 pt : les racines de $-2X^2 + X + 1$ sont 1 et $-\frac{1}{2}$
 - × 1 pt : signe du trinôme
 - 1 pt : (4) $\Leftrightarrow 6x^2 13x + 8 \ge 0$ (par stricte croissance de la fonction carré sur \mathbb{R}_+^*)
 - 1 pt : le polynôme $6X^2 13X + 8$ n'admet pas de racine et son coefficient dominant est strictement positif. On en déduit que l'assertion $(6x^2 13x + 8 \ge 0)$ est toujours vraie.

Par raisonnement par équivalence, la première assertion l'est également.

• 1 pt : l'ensemble des solutions de (4) est : $\mathcal{D}_{(4)} = [-\frac{1}{2}, 1]$.

Exercice 6 /10

Soit $n \in \mathbb{N}$. On considère les sommes :

$$S_n = \sum_{k=0}^n k$$
 et $T_n = \sum_{0 \le i < j \le n} \frac{i}{j}$

1. (*) Rappeler l'expression de S_n en fonction de n et la démontrer.

• 1 pt : $S_n = \frac{n(n+1)}{2}$

 \bullet 3 pts : récurrence

 \times 1 pt : initialisation

 \times 2 pts : hérédité

0 pt en cas de mauvaise rédaction de la récurrence

2. En déduire une expression de T_n en fonction de n.

• 1 pt :
$$\sum_{0 \le i < j \le n} \frac{i}{j} = \sum_{j=1}^{n} \left(\sum_{i=0}^{j-1} \frac{i}{j} \right)$$

• 1 pt:
$$\sum_{j=1}^{n} \left(\sum_{i=0}^{j-1} \frac{i}{j} \right) = \sum_{j=1}^{n} \left(\frac{1}{j} \sum_{i=0}^{j-1} i \right)$$

• 1 pt :
$$\sum_{j=1}^{n} \left(\frac{1}{j} \sum_{i=0}^{j-1} i \right) = \sum_{j=1}^{n} \left(\frac{1}{j} \times \frac{(j-1)\left((j-\cancel{1}) + \cancel{1} \right)}{2} \right)$$
 (d'après la question précédente)

• 1 pt :
$$\frac{1}{2} \sum_{j=1}^{n} (j-1) = \frac{1}{2} \sum_{k=0}^{n-1} k$$
 (avec le décalage d'indice $k = j-1$)

• 1 pt :
$$\frac{1}{2}\sum_{k=0}^{n-1}k=\frac{1}{2}\times\frac{(n-1)\left((n-1)+1\right)}{2}$$
 (d'après la question précédente)

• 1 pt :
$$\forall n \in \mathbb{N}, T_n = \frac{(n-1)n}{4}$$

Exercice 7/11

- 1. Montrer que la suite $(n!)_{n\in\mathbb{N}}$ est strictement croissante.
 - 1 pt
- 2. Montrer que, pour tout $n \in [2, +\infty[$, n! est un nombre pair.
 - 1 pt : si $n \ge 2$, alors : $n! = 1 \times 2 \times \prod_{i=3}^{n} i$.
 - 1 pt : $k = \prod_{i=3}^{n} i \in \mathbb{N}$

On admettra par la suite que pour tout $n \in [3, +\infty[$, n! est un multiple de 3.

- 3. Soit $(a, b) \in \mathbb{N}^2$ tel que : $a \leq b$.
 - a) Exprimer le quotient $\frac{b!}{a!}$ comme produit explicite d'entiers naturels.

• 1 pt :
$$\frac{b!}{a!} = \prod_{i=a+1}^{b} i$$

- b) Que peut-on en déduire sur le réel $\frac{b!}{a!}$?
 - 1 pt : D'après la question précédente, $\frac{b!}{a!}$ est un produit d'entiers.

On en déduit que le réel $\frac{b!}{a!}$ est un entier.

- 4. Démontrer qu'il n'existe pas de couple d'entiers $(b,c) \in \mathbb{N}^2$ tel que : b! = c! + 2.
 - 1 pt : structure de raisonnement par l'absurde
 - 1 pt : cas $c \in \{0, 1\}$
 - 1 pt : cas c = 2
 - 3 pts : cas $c \geqslant 3$
 - × 1 pt : b > c par stricte croissance de $(n!)_{n \in \mathbb{N}}$
 - × 1 pt : comme $b \ge c \ge 3$, d"après la question 3.b), on en déduit que $\frac{b!}{3!}$ et $\frac{c!}{3!}$ sont des entiers.
 - \times 1 pt : $\frac{1}{3} = \frac{b!}{6} \frac{c!}{6}$ est un entier.

Absurde!