DS1

On traitera OBLIGATOIREMENT les questions portant un astérisque. Dans le cas contraire, la note finale se verra divisée par 2.

Exercice 1

On considère l'application $\varphi: [0, +\infty[\to \mathbb{R}, x \mapsto e^x - xe^{\frac{1}{x}}]$. On admet 2 < e < 3.

Partie I : Étude de la fonction φ

1. Montrer que φ est de classe \mathcal{C}^3 sur $]0, +\infty[$, calculer, pour tout x de $]0, +\infty[$, $\varphi'(x)$ et $\varphi''(x)$ et montrer : $\forall x \in]0, +\infty[$, $\varphi'''(x) = e^x + \frac{3x+1}{x^5}$ $e^{\frac{1}{x}}$.

Démonstration.

- La fonction $x \mapsto e^{\frac{1}{x}}$ est de classe \mathcal{C}^3 sur $]0, +\infty[$ car elle est la composée $h_2 \circ h_1$ où :
 - $\times h_1: x \mapsto \frac{1}{x} \text{ est }:$
 - de classe C^3 sur $]0, +\infty[$ en tant qu'inverse d'une fonction de classe C^3 qui ne s'annule pas sur cet intervalle,
 - telle que : $h_1(]0, +\infty[) \subset \mathbb{R}$.
 - $\times h_2: x \mapsto e^x$ est de classe \mathcal{C}^3 sur \mathbb{R} .

On en déduit que la fonction φ est de classe \mathcal{C}^3 sur $]0, +\infty[$ en tant que somme et produit de fonctions de classe \mathcal{C}^3 sur $]0, +\infty[$.

• Soit $x \in]0, +\infty[$.

$$\varphi'(x) = e^{x} - \left(e^{\frac{1}{x}} - x \frac{1}{x^{2}} e^{\frac{1}{x}}\right) = e^{x} + \left(\frac{1}{x} - 1\right) e^{\frac{1}{x}}$$

$$\varphi''(x) = e^{x} - \frac{1}{x^{2}} e^{\frac{1}{x}} - \left(\frac{1}{x} - 1\right) \frac{1}{x^{2}} e^{\frac{1}{x}} = e^{x} - \frac{1}{x^{3}} e^{\frac{1}{x}}$$

$$\varphi'''(x) = e^{x} + \frac{3}{x^{4}} e^{\frac{1}{x}} + \frac{1}{x^{3}} \frac{1}{x^{2}} e^{\frac{1}{x}} = e^{x} + \left(\frac{3}{x^{4}} + \frac{1}{x^{5}}\right) e^{\frac{1}{x}} = e^{x} + \frac{3x + 1}{x^{5}} e^{\frac{1}{x}}$$

$$\forall x \in]0, +\infty[, \varphi'(x) = e^{x} + \left(\frac{1}{x} - 1\right) e^{\frac{1}{x}}$$

$$\varphi'''(x) = e^{x} - \frac{1}{x^{3}} e^{\frac{1}{x}}$$

$$\varphi'''(x) = e^{x} + \frac{3x + 1}{x^{5}} e^{\frac{1}{x}}$$

2. Étudier le sens de variation de φ'' et calculer $\varphi''(1)$. En déduire le sens de variation de φ' , et montrer : $\forall x \in]0, +\infty[, \varphi'(x) \geqslant e$.

Démonstration.

- Soit $x \in]0, +\infty[$. Déterminons le signe de $\varphi'''(x)$.
 - × Tout d'abord : $e^x > 0$ et $e^{\frac{1}{x}} > 0$.
 - × Ensuite, comme x > 0: $\frac{3x+1}{x^5} > 0$

On en déduit : $\varphi'''(x) > 0$.

• On obtient le tableau de variations suivant :

x	0	1		$+\infty$
Signe de $\varphi'''(x)$		+	+	
Variations de φ''	$-\infty$	0		+∞

• Détaillons les éléments de ce tableau :

$$\times$$
 tout d'abord : $\varphi''(1) = e^1 - \frac{1}{1^3} e^{\frac{1}{1}} = e - e = 0.$

$$\times$$
 ensuite: $\lim_{x \to +\infty} \frac{1}{x^3} e^{\frac{1}{x}} = 0 \times 1 = 0$. De plus: $\lim_{x \to +\infty} e^x = +\infty$. Ainsi: $\lim_{x \to +\infty} \varphi''(x) = +\infty$.

$$\times$$
 enfin: $\lim_{x \to 0^+} \frac{1}{x^3} e^{\frac{1}{x}} = +\infty$. De plus: $\lim_{x \to 0^+} e^x = e^0 = 1$. Ainsi: $\lim_{x \to 0^+} \varphi''(x) = -\infty$.

• On déduit le tableau de variations suivant

x	0	1	+∞
Signe de $\varphi''(x)$	_	0	+
Variations de φ'	+∞	e	+∞

• Détaillons les éléments de ce tableau :

$$\times$$
 tout d'abord : $\varphi'(1) = e^1 - \left(\frac{1}{1} - 1\right)e^{\frac{1}{1}} = e$.

× ensuite :
$$\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) e^{\frac{1}{x}} = -1$$
. De plus : $\lim_{x \to +\infty} e^x = +\infty$. Ainsi : $\lim_{x \to +\infty} \varphi'(x) = +\infty$.

× enfin :
$$\lim_{x \to 0^+} \left(\frac{1}{x} - 1 \right) e^{\frac{1}{x}} = +\infty$$
. De plus : $\lim_{x \to 0^+} e^x = 1$. Ainsi : $\lim_{x \to 0^+} \varphi'(x) = +\infty$.

• La fonction φ' est :

 \times strictement décroissante sur]0,1],

 \times strictement croissante sur $[1, +\infty[$.

Elle admet donc un unique minimum en 1 égal à e.

On en déduit :
$$\forall x \in]0, +\infty[, \varphi'(x) \geqslant \varphi'(1) = e.$$

3. Déterminer la limite de $\varphi(x)$ lorsque x tend vers 0 par valeurs strictement positives.

 $D\'{e}monstration.$

• Tout d'abord : $\lim_{x \to 0^+} e^x = e^0 = 1$.

• Ensuite, pour tout $x \in]0, +\infty[: x e^{\frac{1}{x}}] = \frac{e^{\frac{1}{x}}}{\frac{1}{x}}$. Avec le changement de variable $X = \frac{1}{x}$, on obtient :

$$\lim_{x\to 0^+}\frac{\mathrm{e}^{\frac{1}{x}}}{\frac{1}{x}}\ =\ \lim_{X\to +\infty}\frac{\mathrm{e}^X}{X}\ =\ +\infty\quad (\textit{par croissances compar\'ees})$$

Finalement :
$$\lim_{x\to 0^+} \varphi(x) = -\infty$$
.

4. Déterminer la limite de $\frac{\varphi(x)}{x}$ lorsque x tend vers $+\infty$, et la limite de $\varphi(x)$ lorsque x tend vers $+\infty$.

 $D\'{e}monstration.$

• Soit $x \in]0, +\infty[$.

$$\frac{\varphi(x)}{x} = \frac{e^x - x e^{\frac{1}{x}}}{x} = \frac{e^x}{x} - e^{\frac{1}{x}}$$

Or:

 \times par croissances comparées : $\lim_{x\to +\infty} \frac{\mathrm{e}^x}{x} = +\infty$.

$$\times \lim_{x \to +\infty} e^{\frac{1}{x}} = e^0 = 1.$$

On en déduit :
$$\lim_{x \to +\infty} \frac{\varphi(x)}{x} = +\infty$$
.

• Pour tout $x \in]0, \infty[: \varphi(x) = x \frac{\varphi(x)}{x}$.

D'après le calcul de limite précédent :
$$\lim_{x\to +\infty} \varphi(x) = +\infty$$
.

5. On admet : $15 < \varphi(3) < 16$. Montrer : $\forall x \in [3, +\infty[, \varphi(x) \ge e x]$. On note $\mathcal C$ la courbe représentative de φ .

 $D\'{e}monstration.$

- On note $h: x \mapsto \varphi(x) ex$. La fonction h est dérivable sur $]0, +\infty[$ en tant que somme de fonctions dérivables sur $]0, +\infty[$.
- Soit $x \in]0, +\infty[$.

$$h'(x) = \varphi'(x) - e \geqslant 0$$
 (d'après 2.)

• On obtient le tableau de variations suivant :

x	0		3		$+\infty$
Signe de $h'(x)$		+		+	
Variations de h	$-\infty$		_h(3)		$+\infty$

• En particulier : $\forall x \in [3, +\infty[, h(x) \ge h(3)]$. Or :

$$h(3) = \varphi(3) - 3e > 15 - 3e > 0$$

On en déduit, pour tout $x \in [3, +\infty[: h(x) \ge 0, \text{ c'est-à-dire } \varphi(x) \ge e x.$

Commentaire

On pouvait également démontrer cette inégalité en utilisant la convexité de φ .

• D'après la question $2 : \forall x \in]1, +\infty[, \varphi''(x) > 0.$ La fonction φ est donc convexe sur $]1, +\infty[$. Sa courbe représentative est donc située au-dessus de ses tangentes, notamment celle au point d'abscisse 3, droite d'équation :

$$y = \varphi'(3)(x-3) + \varphi(3)$$

• Soit $x \in [3, +\infty[$.

Comme
$$\varphi'(3) \geqslant e$$
 (d'après la question 2.)
alors $\varphi'(3)(x-3) \geqslant e(x-3)$ (car $x-3 \geqslant 0$)

d'où
$$\varphi'(3)(x-3) + \varphi(3) \geqslant e(x-3) + 15$$
 $\begin{pmatrix} (car \ \varphi(3) > 15 \ d'après \\ l'énoncé) \end{pmatrix}$

• De plus, comme e < 3:

$$e(x-3) + 15 = ex - 3e + 15 \ge ex$$

Finalement : $\forall x \in [3, +\infty[, \varphi(x) \geqslant \varphi'(3)(x-3) + \varphi(3) \geqslant e x.$

6. Montrer que \mathcal{C} admet un unique point d'inflexion, déterminer les coordonnées de celui-ci et l'équation de la tangente en ce point.

Démonstration.

• La fonction φ'' est négative sur [0,1] et positive sur $[1,+\infty[$.

La fonction φ change donc de convexité en 1, seul point d'inflexion de la courbe représentative de φ .

• Les coordonnées de ce point d'inflexion sont $(1, \varphi(1))$. Or :

$$\varphi(1) = e^1 - 1e^{\frac{1}{1}} = e - e = 0$$

La courbe représentative de φ admet pour point d'inflexion, le point de coordonnées (1,0).

L'équation de la tangente à la courbe représentative de
$$\varphi$$
 en 1 est : $y = \varphi'(1)(x-1) + \varphi(1) = e(x-1).$

7. Dresser le tableau de variations de φ , avec les limites en 0 et en $+\infty$, et la valeur en 1. Tracer l'allure de \mathcal{C} et faire apparaître la tangente au point d'inflexion.

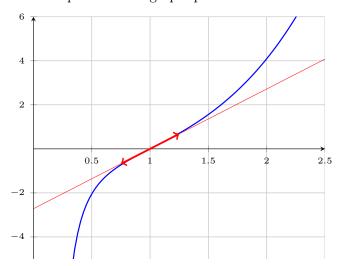
Démonstration.

• D'après la question 2. : $\forall x \in]0, +\infty[, \varphi'(x) \ge e > 0.$ On obtient donc le tableau de variations suivant :

x	0	1	+∞
Signe de $\varphi'(x)$	+		+
Variations de φ	$-\infty$		+∞

• L'obtention des différents éléments de ce tableau a été détaillée en questions 3 et 4.

 \bullet On en déduit que $\mathcal C$ admet la représentation graphique suivante.



Commentaire

- Un point d'inflexion de \mathcal{C} est un point en lequel \mathcal{C} change de convexité. Si la fonction φ est de classe \mathcal{C}^2 sur l'intervalle I d'étude, une condition suffisante d'existence de point d'inflexion est que la fonction φ'' s'annule **en changeant de signe** en l'abscisse de ce point.
- L'énoncé demande de représenter la tangente au point d'inflexion. Il est important que le dessin de la courbe mette en évidence :
 - \times la notion de tangente : la courbe de \mathcal{C} et la tangente doivent apparaître comme confondues à proximité du point (1,0).
- \times la notion de point d'inflexion : sur]0, 1[la fonction est concave et sur]1, $+\infty$ [la fonction est convexe. Cela doit apparaître clairement sur la représentation graphique. En particulier, la tangente obtenue « traverse » la courbe \mathcal{C} .

Partie II : Étude d'une suite

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et : $\forall n\in\mathbb{N},\ u_{n+1}=\varphi(u_n)$.

8. Montrer que, pour tout n de \mathbb{N} , u_n existe et $u_n \geqslant 3 e^n$. (on pourra utiliser les résultats de la **Partie I**)

Démonstration.

Démontrons par récurrence : $\forall n \in \mathbb{N}, \mathcal{P}(n)$ où $\mathcal{P}(n) : \begin{cases} u_n \text{ existe} \\ u_n \geqslant 3 e^n \end{cases}$

▶ Initialisation :

D'après l'énoncé : $u_0=3$. Or : $3\,\mathrm{e}^0=3$. D'où : $u_0\geqslant 3\,\mathrm{e}^0$. D'où $\mathcal{P}(0)$.

▶ Hérédité : soit $n \in \mathbb{N}$.

Supposons $\mathcal{P}(n)$ et démontrons $\mathcal{P}(n+1)$ (*i.e.* $\begin{cases} u_{n+1} \text{ existe} \\ u_{n+1} \geqslant 3 e^{n+1} \end{cases}$).

• Par hypothèse de récurrence, u_n existe et : $u_n \ge 3 e^n$. En particulier : $u_n > 0$. Donc $\varphi(u_n)$ est bien défini. On en déduit que u_{n+1} existe.

• Par hypothèse de récurrence : $u_n \geqslant 3$ eⁿ $\geqslant 3$. Donc : $u_n \in [3, +\infty[$. Alors, d'après la question 5. :

D'où $\mathcal{P}(n+1)$.

Par principe de récurrence, pour tout $n \in \mathbb{N}$, u_n existe et $u_n \geqslant 3 e^n$.

9. Montrer que la suite (u_n) est strictement croissante et que u_n tend vers $+\infty$ lorsque n tend vers l'infini.

Démonstration.

• Soit $n \in \mathbb{N}$.

D'après la question précédente : $u_n \in [3, +\infty[$.

Ainsi, d'après la question 5. :

$$\varphi(u_n) \geqslant e u_n$$
 $\qquad \qquad \lor$
 $u_{n+1} \qquad u_n$

On en déduit que la suite (u_n) est strictement croissante.

• Toujours d'après la question précédente :

$$\forall n \in \mathbb{N}, \ u_n \geqslant 3 e^n$$

Or:
$$\lim_{n \to +\infty} 3 e^n = +\infty$$
.

Par théorème de comparaison :
$$\lim_{n \to +\infty} u_n = +\infty$$
.

10. Écrire un programme Python qui affiche et calcule le plus petit entier n tel que $u_n \ge 10^3$.

Démonstration.

Détaillons les éléments de ce programme.

• Début du programme

On commence par importer la libraire numpy qui contient notamment la fonction exp utile ultérieurement.

La variable n est initialisée à 0.

La variable u, qui contiendra les valeurs successives de la suite (u_n) , est initialisée à $u_0 = 3$.

import numpy as np
$$n = 0$$

$$u = 3$$

• Structure itérative

Les lignes $\underline{4}$ à $\underline{6}$ consistent à déterminer le plus petit entier n tel que $u_n \ge 10^3$. On doit donc calculer les valeurs successives de la suite (u_n) jusqu'à ce que $u_n \ge 10^3$. Autrement dit, on doit calculer ces valeurs successives tant que $u_n < 10^3$. Pour cela on met en place une structure itérative (while):

Tant que $u_n < 10^3$, on calcule u_{n+1} et on stocke toujours cette valeur dans la variable ${\tt u}$:

$$\underline{5}$$
 $u = np.exp(u) - u * np.exp(1/u)$

On met alors à jour en conséquence la variable ${\tt n}$: on ajoute 1 pour signaler qu'on a calculé u_{n+1} .

• Fin du programme

À l'issue de cette boucle, la variable n contient le plus petit entier n tel que $u_n \ge 10^3$. On affiche alors enfin la valeur de la variable n

Commentaire

Afin de permettre une bonne compréhension des mécanismes en jeu, on a détaillé la réponse à cette question. Cependant, écrire correctement le programme **Python** démontre la bonne compréhension de la simulation demandée et permet certainement d'obtenir la majorité des points alloués à cette question.

Exercice 2

Écrire de manière mathématique les propositions suivantes ainsi que leur négation. On évaluera ensuite la véracité de ces propositions.

1. Tout nombre réel positif est inférieur ou égal à son carré.

Démonstration.

Cette proposition s'écrit de la façon suivante : $\forall x \in \mathbb{R}_+, x \leqslant x^2$

Sa négation est :
$$\exists x_0 \in \mathbb{R}_+, x_0 > x_0^2$$
.

Étudions la véracité de la proposition 1.

En choisissant $x_0 = \frac{1}{2}$, on remarque : $x_0 > x_0^2$.

Ainsi la négation de la proposition 1. est vraie.

La proposition 1. est donc fausse.

Commentaire

- On démontre ici que la négation de la proposition 1. est vraie. Cette négation est une proposition quantifiée existentiellement. Il faut donc exhiber un objet vérifiant cette proposition pour conclure quant à sa véracité.
- Notons que tout réel $x_0 \in]0,1[$ constitue un contre-exemple valide. Cependant écrire :

On sait :
$$\forall x \in]0,1[,x>x^2]$$
. Ainsi la proposition 1. est fausse.

est une erreur de logique grave. La proposition ($\forall x \in \mathbb{R}_+, \ x > x^2$) n'a en effet pas de lien logique avec la proposition $\mathbf{1}$. ($\forall x \in \mathbb{R}_+, \ x \leq x^2$). En particulier, ces deux propositions ne sont pas la négation l'une de l'autre. Il s'agit ici d'une confusion entre les quantificateurs \forall et \exists .

• Si l'on ne repère pas immédiatement un contre-exemple à la proposition 1., on peut tout de même conclure en cherchant à se ramener à une proposition équivalente pour laquelle l'étude de la véracité est plus simple. Cela donnerait la rédaction suivante.

Soit $x \in \mathbb{R}_+$. Deux cas se présentent :

 \times si x > 0, alors:

$$x \leqslant x^2 \Leftrightarrow 1 \leqslant x$$

 \times si x = 0, alors l'inégalité est vérifiée (on a bien : $0 \le 0^2$).

La proposition 1. est donc équivalente à :

$$\forall x \in \mathbb{R}_+, \ (x=0) \ \text{OU} \ (1 \leqslant x)$$

Cette proposition est fausse. En effet, en choisissant $x_0 = \frac{1}{2}$, on remarque :

$$x_0 \in \mathbb{R}_+$$
 ET $((x_0 \neq 0)$ ET $(1 > x_0))$

Deux propositions équivalentes ayant même valeur de vérité, la proposition 1. est fausse.

2. Tout réel positif de racine carrée supérieure ou égale à 2, est lui-même supérieur ou égal à 4.

Démonstration.

Cette proposition s'écrit de la façon suivante : $\forall x \in \mathbb{R}_+, \ (\sqrt{x} \ge 2) \Rightarrow (x \ge 4)$

Sa négation est :
$$\exists x_0 \in \mathbb{R}_+, \ (\sqrt{x_0} \geqslant 2)$$
 ET $(x_0 < 4)$.

Étudions la véracité de la proposition 2.

Soit $x \in \mathbb{R}_+$.

Supposons : $\sqrt{x} \ge 2$.

Alors
$$(\sqrt{x})^2 \geqslant 2^2$$
 (par croissance de la fonction $x \mapsto x^2 \operatorname{sur} \mathbb{R}_+$)
Ainsi $x \geqslant 4$

La proposition 2. est donc vraie.

Commentaire

- Insistons sur la facilité de cette démonstration. Il s'agit essentiellement de mettre en place les structures de démonstration. En l'occurence, il faut ici savoir démontrer :
 - × une propriété quantifiée universellement : $\forall x \in E, p(x)$ Soit $x \in E$. . .
 - × une implication : $p \Rightarrow q$ Supposons p et démontrons q.
- Précisons la manière d'agir.

```
Soit x \in \mathbb{R}_+.
Supposons \sqrt{x} \geqslant 2. Alors:
Ainsi: x \geqslant 4.
```

- \times Les lignes <u>1</u> et <u>4</u> correspondent à la mise en place de la structure de démonstration.
- \times Il s'agit de démontrer une propriété quantifée universellement en x. On commence donc en ligne $\underline{1}$ la démonstration par : « Soit $x \dots$ ».
- × La ligne $\underline{2}$ correspond à la structure de démonstration d'une implication. On souhaite démontrer : $(\sqrt{x} \ge 2) \Rightarrow (x \ge 4)$. On commence donc par supposer $(\sqrt{x} \ge 2)$, puis on démontre, par implication, $(x \ge 4)$.

C'est seulement à ce moment que l'on rentre dans la phase de démonstration à proprement parler.

• Le message est clair : sur les 4 lignes de rédaction, 3 proviennent de la présentation et seule 1 correspond à la démonstration. Il n'est donc pas acceptable de ne pas savoir **commencer** ce type de questions, car cela démontre un défaut de connaissance du cours (définitions du chapitre et / ou structures de démonstration).

3. Le trinôme $z^2 - 3z + 2$ admet une racine réelle.

Démonstration.

Cette proposition s'écrit de la façon suivante : $\exists z_0 \in \mathbb{R}, z_0^2 - 3z_0 + 2 = 0.$

Sa négation est :
$$\forall z \in \mathbb{R}, z^2 - 3z + 2 \neq 0$$
.

Étudions la véracité de la proposition 3. En choisissant $z_0 = 1$, on remarque :

$$z_0^2 - 3z_0 + 2 = 1^2 - 3 + 2 = 1 - 1 = 0$$

La proposition 3. est donc vraie.

Commentaire

- La proposition 3. est une proposition quantifiée existentiellement. Il faut donc exhiber un objet vérifiant cette proposition pour conclure quant à sa véracité.
- Notons que le réel 2 pouvait également constituer un exemple valide.
- Si l'on ne repère pas immédiatement une racine réelle du trinôme $z^2 3z + 2$ (ce qui serait un tort puisqu'on rappelle qu'il est toujours pertinent de tester si les réels suivants sont racines évidentes : 0, 1, -1, 2, -2), on peut conclure quant à l'existence de racines réelles grâce au discriminant.

Notons Δ le discriminant de ce trinôme. Alors :

$$\Delta = (-3)^2 - 4 \times 1 \times 2 = 9 - 8 = 1$$

Comme $\Delta > 0$, le trinôme étudié admet deux racines réelles que l'on note z_1 et z_2 . Ainsi, z_1 (ou z_2) vérifie la proposition 3. Cette dernière est donc vraie.

4. La suite $(2n - \sqrt{5})_{n \in \mathbb{N}}$ est une suite arithmétique.

Démonstration.

Cette proposition s'écrit de la façon suivante :

$$\exists r \in \mathbb{R}, \, \forall n \in \mathbb{N}, \, 2(n+1) - \sqrt{5} = 2n - \sqrt{5} + r.$$

Sa négation est : $\forall r \in \mathbb{R}, \exists n_0 \in \mathbb{R}, 2(n_0 + 1) - \sqrt{5} \neq 2n_0 - \sqrt{5} + r$.

Etudions la véracité de la proposition 4.

Soit $n \in \mathbb{N}$.

$$2(n+1) - \sqrt{5} = 2n + 2 - \sqrt{5} = 2n - \sqrt{5} + 2$$

Ainsi, en choisissant r=2, on obtient :

$$\forall n \in \mathbb{N}, \ 2(n+1) - \sqrt{5} = 2n - \sqrt{5} + r$$

La proposition 4. est donc vraie.

Exercice 3

Dans les paires suivantes, les propositions (à paramètre) sont-elles équivalentes pour toute valeur des paramètres? Si ce n'est pas le cas, donner les implications valables. Toute réponse devra être justifiée.

1. Paramètre : $x \in \mathbb{R}$. Propositions : $(x^3 \le 3)$ et $(|x| \le 3^{\frac{1}{3}})$.

Démonstration.

• En choisissant $x_0 = -3$, on remarque que :

× la proposition $(x_0^3 \le 3)$ est vraie. En effet : $(-3)^3 \le 0 \le 3$.

 \times la proposition $(|x_0| \le 3^{\frac{1}{3}})$ est fausse. En effet : $|-3| = 3 = 3^1$. De plus :

Comme les deux propositions n'ont pas la même valeur de vérité pour chaque valeur de x, elles ne sont pas équivalentes.

Commentaire

- Comme toujours, il est possible de trouver un contre-exemple même sans la moindre inspiration. Pour cela, on peut commencer par chercher à démontrer l'équivalence entre les deux propositions.
- Soit $x \in \mathbb{R}$. Deux cas se présentent :

$$\times$$
 si $x > 0$, alors:

$$x^{3} \leqslant 3$$

$$\Leftrightarrow e^{3 \ln(x)} \leqslant 3$$

$$\Leftrightarrow 3 \ln(x) \leqslant \ln(3) \quad \begin{array}{l} (par \ stricte \ croissance \\ de \ \ln sur \ \mathbb{R}_{+}^{*}) \end{array}$$

$$\Leftrightarrow \ln(x) \leqslant \frac{1}{3} \ln(3)$$

$$\Leftrightarrow x \leqslant 3^{\frac{1}{3}} \quad \begin{array}{l} (par \ stricte \ croissance \\ de \ exp \ sur \ \mathbb{R}) \end{array}$$

$$\Leftrightarrow |x| \leqslant 3^{\frac{1}{3}} \quad (car \ x \geqslant 0)$$

Les deux propositions sont donc bien équivalentes lorsque x est strictement positif.

Commentaire

 \times si $x \leq 0$, alors:

- la proposition $(x^3 \leq 3)$ est toujours vraie. En effet :

comme
$$x \leqslant 0$$
alors $x^3 \leqslant 0^3$ (par croissance de la fonction $x \mapsto x^3$ sur \mathbb{R})
donc $x^3 \leqslant 0 \leqslant 3$

- cependant pour la proposition $(|x| \le 3^{\frac{1}{3}})$, on obtient :

$$|x| \leqslant 3^{\frac{1}{3}} \Leftrightarrow -3^{\frac{1}{3}} \leqslant x \leqslant 3^{\frac{1}{3}}$$
$$\Leftrightarrow -3^{\frac{1}{3}} \leqslant x \leqslant 0 \quad (car \ x \leqslant 0)$$

En particulier, lorsque $x < -3^{\frac{1}{3}}$:

- \times la $1^{\text{\`e}re}$ proposition est vraie,
- $_{\times}$ la $2^{\rm nde}$ est fausse.

Tout réel x strictement inférieur à $-3^{\frac{1}{3}}$ constituera donc un contre-exemple à l'équivalence de ces deux propositions pour tout $x \in \mathbb{R}$.

- Soit $x \in \mathbb{R}$.
 - × L'implication suivante est fausse : $(x^3 \le 3) \Rightarrow (|x| \le 3^{\frac{1}{3}})$. En effet, en reprenant le point précédent, pour $x_0 = -3$:
 - $(x_0^3 \leqslant 3)$ est vraie
 - \blacktriangleright $(|x_0| \leqslant 3^{\frac{1}{3}})$ est fausse.

Or l'assertion (VRAI \Rightarrow FAUX) est fausse.

× Démontrons : $(|x| \le 3^{\frac{1}{3}}) \Rightarrow (x^3 \le 3)$.

Supposons : $|x| \leq 3^{\frac{1}{3}}$. Alors :

$$-3^{\frac{1}{3}} \leqslant x \leqslant 3^{\frac{1}{3}}$$
 donc
$$\left(-3^{\frac{1}{3}}\right)^{3} \leqslant x^{3} \leqslant \left(3^{\frac{1}{3}}\right)^{3} \quad (par\ croissance\ de\ la\ fonction\ x\mapsto x^{3}\ sur\ \mathbb{R})$$
 d'où
$$-3 \leqslant x^{3} \leqslant 3$$

En particulier, on a bien : $x^3 \leq 3$.

2. Paramètre : $x \in \mathbb{R}_{+}^{*}$.

Propositions : (x < 1) et $(x^2 < x)$.

 $D\'{e}monstration.$

Soit $x \in \mathbb{R}_+^*$.

$$x < 1 \Leftrightarrow x \times x < x \times 1 \quad (car \ x > 0)$$

 $\Leftrightarrow x^2 < x$

Les deux propositions sont donc équivalentes pour tout $x \in \mathbb{R}_+^*$.

3. Paramètres : $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in \mathbb{R}^n$. Propositions : $(x_1^2 + \dots + x_n^2 = 0)$ et $(\forall i \in [1, n], x_i = 0)$

Démonstration.

Soit $n \in \mathbb{N}^*$. Soit $(x_1, \dots, x_n) \in \mathbb{R}^n$.

On procède par double implication.

 (\Rightarrow) Supposons : $x_1^2 + \dots + x_n^2 = 0$.

Le réel $\sum_{i=1}^{n} x_i^2$ est donc une somme nulle de termes positifs. On en déduit que chacun des termes

est nul, c'est-à-dire : $\forall i \in [1, n], x_i^2 = 0.$

On en déduit : $\forall i \in [1, n], x_i = 0$. (car 0 est le seul réel de carré égal à 0)

 (\Leftarrow) Supposons : $\forall i \in [1, n], x_i = 0$. Alors :

$$x_1^2 + \dots + x_n^2 = \sum_{i=1}^n x_i^2 = \sum_{i=1}^n 0^2 = \sum_{i=1}^n 0 = 0$$

Les deux propositions sont donc équivalentes pour tout $n \in \mathbb{N}^*$ et tout $(x_1, \dots, x_n) \in \mathbb{R}^n$.

4. Paramètre : $(x,y) \in \mathbb{R}^2$. Propositions : $(x^2+y^2>1)$ et $\left(|x|>1 \text{ OU } |y|>1\right)$.

 $D\'{e}monstration.$

- En choisissant $x_0 = 1$ et $y_0 = 1$, on remarque que :
 - × la proposition $(x^2 + y^2 > 1)$ est vraie. En effet :

$$x_0^2 + y_0^2 = 1^2 + 1^2 = 1 + 1 = 2 > 1$$

× la proposition (|x| > 1) OU |y| > 1 est fausse. En effet : $|x_0| = |1| = 1 \ge 1$. De même pour y_0 .

Comme les deux propositions n'ont pas la même valeur de vérité pour chaque valeur de (x, y), elles ne sont pas équivalentes.

- Soit $(x,y) \in \mathbb{R}^2$.
 - × L'implication suivante est fausse : $(x^2 + y^2 > 1) \Rightarrow (|x| > 1 \text{ OU } |y| > 1)$. En effet, en reprenant le point précédent, pour $x_0 = y_0 = 1$:
 - $(x_0^2 + y_0^2 > 1)$ est vraie
 - $(|x_0| > 1 \text{ OU } |y_0| > 1) \text{ est fausse.}$

Or l'assertion (VRAI \Rightarrow FAUX) est fausse.

- × Démontrons : $(|x| > 1 \text{ OU } |y| > 1) \Rightarrow (x^2 + y^2 > 1)$. Supposons : |x| > 1 OU |y| > 1. Deux cas se présentent :
 - ▶ $\operatorname{si}[x] \ge 1$, alors, par croissance de la fonction carré sur \mathbb{R}_+ , on obtient : $x^2 > 1$. Or, on a toujours : $y^2 \ge 0$. Ainsi :

$$x^2 + y^2 \geqslant x^2 > 1$$

▶ $\underline{\sin|y|} \ge \underline{1}$, alors, par croissance de la fonction carré sur \mathbb{R}_+ , on obtient : $y^2 > 1$. Or, on a toujours : $x^2 \ge 0$. Ainsi :

$$x^2 + y^2 \geqslant y^2 > 1$$

Dans les deux cas, on obtient bien : $x^2 + y^2 > 1$.

Exercice 4

Pour chacune des propositions $P(\cdot)$ ci-dessous, déterminer si la proposition $Q(\cdot)$ est nécessaire, suffisante, les deux à la fois ou rien du tout (réponse à justifier).

1. Paramètre : $(x,y) \in \mathbb{Z}^2$.

Propositions: $P(x,y): (x^2 - y^2 = 0)$ et Q(x,y): (x = y).

Démonstration.

Soit $(x,y) \in \mathbb{Z}^2$.

 (\Rightarrow) L'implication $(P(x,y) \Rightarrow Q(x,y))$ est fausse.

En effet, en choisissant $x_0 = 1$ et $y_0 = -1$, on obtient :

 \times d'une part :

$$x_0^2 - y_0^2 = 1^2 - (-1)^2 = 1 - 1 = 0$$

 \times d'autre part : $x_0 \neq y_0$.

Ainsi le couple (x_0, y_0) vérifie : $P(x_0, y_0)$ ET $NON(Q(x_0, y_0))$.

La proposition Q(x,y) n'est donc pas une condition nécessaire à P(x,y).

 (\Leftarrow) Supposons Q(x,y): x = y. Alors:

$$x^2 = y^2$$

$$donc x^2 - y^2 = 0$$

D'où : P(x, y).

La proposition Q(x,y) est donc une condition suffisante à P(x,y).

2. Paramètre : $(a, b, c) \in \mathbb{R}^3$.

Propositions: P(a, b, c): (|a + b + c| = 0) et Q(a, b, c): (a = b = c = 0).

Démonstration.

Soit $(a, b, c) \in \mathbb{R}^3$.

 (\Rightarrow) L'implication $(P(a,b,c) \Rightarrow Q(a,b,c))$ est fausse.

En effet, en choisissant $a_0 = 1$, $b_0 = 1$ et $c_0 = -2$, on obtient :

 \times d'une part :

$$|a_0 + b_0 + c_0| = |1 + 1 - 2| = |0| = 0$$

 \times d'autre part : $a_0 \neq 0$.

Ainsi le triplet (a_0, b_0, c_0) vérifie : $P(a_0, b_0, c_0)$ ET $NON(Q(a_0, b_0, c_0))$.

La proposition Q(a, b, c) n'est donc pas une condition nécessaire à P(a, b, c).

 (\Leftarrow) Supposons Q(a,b,c):(a=b=c=0). Alors:

$$|a+b+c| = |0+0+0| = |0| = 0$$

D'où : P(a, b, c).

La proposition Q(a, b, c) est donc une condition suffisante à P(a, b, c).

3. Paramètres : $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $a\in\mathbb{R}$.

Propositions : $P((u_n)_{n\in\mathbb{N}}, a)$: (la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison a) et $Q((u_n)_{n\in\mathbb{N}}, a)$: $(\forall n \in \mathbb{N}, u_{n+2} - u_{n+1} = u_{n+1} - u_n)$.

Démonstration.

Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $a\in\mathbb{R}$.

(⇒) Supposons $P((u_n)_{n\in\mathbb{N}})$: la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison a.

Alors: $\forall n \in \mathbb{N}, u_{n+1} = u_n + a.$

Soit $n \in \mathbb{N}$.

$$u_{n+2} - u_{n+1} = u_{n+1} + a - u_{n+1}$$
 $(car (u_n)_{n \in \mathbb{N}} est \ arithmétique de raison a)$
= a

De même :

$$u_{n+1} - u_n = y_n + a - y_n$$
 $(car(u_n)_{n \in \mathbb{N}} est \\ arithmétique de raison a)$
= a

Ainsi : $u_{n+2} - u_{n+1} = u_{n+1} - u_n$.

D'où : $Q((u_n)_{n\in\mathbb{N}}, a)$.

La proposition $Q((u_n)_{n\in\mathbb{N}}, a)$ est donc une condition nécessaire à $P((u_n)_{n\in\mathbb{N}}, a)$.

 (\Leftarrow) L'implication $(Q((u_n)_{n\in\mathbb{N}},a) \Rightarrow P((u_n)_{n\in\mathbb{N}},a))$ est fausse.

En effet, en choisissant a=0 et la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}, u_n=n$, on obtient :

× d'une part, pour tout $n \in \mathbb{N}$:

$$u_{n+2} - u_{n+1} = (\varkappa + 2) - (\varkappa + 1) = 1$$

De plus:

$$u_{n+1} - u_n = (\varkappa + 1) - \varkappa = 1$$

Ainsi : $u_{n+2} - u_{n+1} = u_{n+1} - u_n$.

 \times d'autre part, la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas arithmétique de raison a=0. En effet, pour tout $n\in\mathbb{N}$:

$$u_{n+1} = n+1 = u_n+1 \neq u_n+0$$

Ainsi, le couple $((u_n)_{n\in\mathbb{N}}, a)$ vérifie : $Q((u_n)_{n\in\mathbb{N}}, a)$ ET $NON(P((u_n)_{n\in\mathbb{N}}, a))$.

La proposition $Q((u_n)_{n\in\mathbb{N}}, a)$ n'est donc pas une condition suffisante à $P((u_n)_{n\in\mathbb{N}}, a)$.

Commentaire

- Si les deux propositions de l'énoncé ne sont pas équivalentes, les deux suivantes le sont pour toute suite $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$:
 - $\times p((u_n)_{n\in\mathbb{N}})$: la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique.
 - $\times q((u_n)_{n\in\mathbb{N}}): \forall n\in\mathbb{N}, u_{n+2}-u_{n+1}=u_{n+1}-u_n.$

Commentaire

- En effet, soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$.
- (⇒) Supposons $p((u_n)_{n\in\mathbb{N}})$: la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique. Alors il existe $r\in\mathbb{N}$ tel que : $\forall n\in\mathbb{N},\ u_{n+1}=u_n+r$. Soit $n\in\mathbb{N}$.

$$u_{n+2} - u_{n+1} = u_{n+1} + r - u_{n+1}$$
 $(car (u_n)_{n \in \mathbb{N}} est \\ arithmétique de raison r)$
= r

De même :

$$u_{n+1} - u_n = y_n + r - y_n$$
 $(car (u_n)_{n \in \mathbb{N}} est$ $arithmétique de raison $r)$$

Ainsi : $u_{n+2} - u_{n+1} = u_{n+1} - u_n$. D'où $q((u_n)_{n \in \mathbb{N}})$.

(\Leftarrow) Supposons $q((u_n)_{n\in\mathbb{N}}): \forall n\in\mathbb{N}, u_{n+2}-u_{n+1}=u_{n+1}-u_n$. On pose alors la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ v_n = u_{n+1} - u_n$$

On remarque alors, pour tout $n \in \mathbb{N}$:

$$v_{n+1} = u_{(n+1)+1} - u_{n+1} = u_{n+2} - u_{n+1} = u_{n+1} - u_n = v_n$$

La suite $(v_n)_{n\in\mathbb{N}}$ est donc constante.

On en déduit qu'il existe $r \in \mathbb{N}$ tel que : $\forall n \in \mathbb{N}, v_n = r$.

Autrement dit : $\forall n \in \mathbb{N}, \ u_{n+1} - u_n = r$. Ainsi :

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + r$$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc une suite arithmétique (de raison r). D'où $p((u_n)_{n\in\mathbb{N}})$.

Exercice 5

Résoudre les équations et inéquations suivantes, d'inconnue $x \in \mathbb{R}$.

1.
$$5^{3x+4} - 2^{2x-3} = 0$$

3.
$$\sqrt{-x^2 + x + 3} \leqslant 2x + 1$$

2.
$$|x+1| + |2x+1| = 0$$

4.
$$|3-2x| \geqslant \sqrt{-2x^2+x+1}$$

 $D\'{e}monstration.$

- 1. Résolvons l'équation (1).
 - Déterminons son ensemble de définition $\mathcal{D}_{(1)}$. Il n'y a aucun problème de définition dans cette équation.

Ainsi :
$$\mathcal{D}_{(1)} = \mathbb{R}$$
.

• Soit $x \in \mathbb{R}$.

$$5^{3x+4} - 2^{2x-3} = 0 \Leftrightarrow 5^{3x+4} = 2^{2x-3}$$

$$\Leftrightarrow e^{(3x+4)\ln(5)} = e^{(2x-3)\ln(2)}$$

$$\Leftrightarrow (3x+4)\ln(5) = (2x-3)\ln(2) \qquad \text{(par injectivit\'e de exp sur } \mathbb{R})$$

$$\Leftrightarrow 3x\ln(5) + 4\ln(5) = 2x\ln(2) - 3\ln(2)$$

$$\Leftrightarrow 3x\ln(5) - 2x\ln(2) = -4\ln(5) - 3\ln(2)$$

$$\Leftrightarrow (3\ln(5) - 2\ln(2))x = -4\ln(5) - 3\ln(2)$$

$$\Leftrightarrow x = \frac{-4\ln(5) - 3\ln(2)}{3\ln(5) - 2\ln(2)}$$

L'ensemble des solutions de (1) est donc : $\{-\frac{4 \ln(5) + 3 \ln(2)}{3 \ln(5) - 2 \ln(2)}\}$.

- 2. Résolvons l'équation (2).
 - Déterminons son ensemble de définition $\mathcal{D}_{(2)}$. Il n'y a aucun problème de définition dans cette équation.

Ainsi :
$$\mathcal{D}_{(2)} = \mathbb{R}$$
.

• Soit $x \in \mathbb{R}$.

On résout l'équation (2) par disjonction de cas selon le signe des termes (x+1) et (2x+1).

- \times d'une part : $x + 1 \ge 0 \Leftrightarrow x \ge -1$.
- × d'autre part :

$$2x+1 \geqslant 0 \Leftrightarrow 2x \geqslant -1 \Leftrightarrow x \geqslant -\frac{1}{2}$$

On obtient le tableau de signes suivant.

x	$-\infty$		-1		$-\frac{1}{2}$		$+\infty$
x+1		_	0	+		+	
2x+1		_		_	0	+	

Trois cas se présentent alors.

 \times Si $x \leq -1$, alors:

$$|x+1| + |2x+1| = 0 \Leftrightarrow -(x+1) - (2x+1) = 0$$

$$\Leftrightarrow -x - 1 - 2x - 1 = 0$$

$$\Leftrightarrow -3x - 2 = 0$$

$$\Leftrightarrow -2 = 3x$$

$$\Leftrightarrow -\frac{2}{3} = x$$

Cependant $-\frac{2}{3} \notin]-\infty, -1]$. L'équation (2) n'admet donc pas de solution sur $]-\infty, -1]$. \times Si $x \in]-1, -\frac{1}{2}]$, alors :

$$|x+1| + |2x+1| = 0 \Leftrightarrow (x+1) - (2x+1) = 0$$

$$\Leftrightarrow x + \mathbf{1} - 2x - \mathbf{1} = 0$$

$$\Leftrightarrow -x = 0$$

$$\Leftrightarrow x = 0$$

Cependant $0 \notin]-1, -\frac{1}{2}]$. L'équation (2) n'admet donc pas de solution sur $]-1, -\frac{1}{2}]$.

 $\times \operatorname{si}_{x} > -\frac{1}{2}$, alors :

$$|x+1| + |2x+1| = 0 \Leftrightarrow (x+1) + (2x+1) = 0$$

$$\Leftrightarrow x+1+2x+1 = 0$$

$$\Leftrightarrow 3x+2 = 0$$

$$\Leftrightarrow 3x = -2$$

$$\Leftrightarrow x = -\frac{2}{3}$$

Cependant $-\frac{2}{3} \notin]-\frac{1}{2},+\infty[$. L'équation (2) n'admet donc pas de solution sur $]-\frac{1}{2},+\infty[$.

Finalement, l'ensemble des solutions de (2) est : \emptyset .

- 3. Résolvons l'inéquation (3).
 - Déterminons son ensemble de définition $\mathcal{D}_{(3)}$. Soit $x \in \mathbb{R}$.

L'inéquation (3) est bien définie $\Leftrightarrow -x^2 + x + 3 \ge 0$

On note Δ le discriminant du trinôme $-X^2+X+3$. Alors :

$$\Delta = 1^2 - 4 \times (-1) \times 3 = 1 + 12 = 13$$

Le trinôme $-X^2 + X + 3$ admet donc deux racines réelles notées x_1 et x_2 :

$$x_1 = \frac{-1 - \sqrt{13}}{2} = -\frac{1 + \sqrt{13}}{2}$$
 et $x_2 = \frac{-1 + \sqrt{13}}{2}$

On obtient alors le signe du trinôme $-x^2 + x + 3$.

x	$-\infty$		x_1		x_2		$+\infty$
Signe de $-x^2 + x + 3$		_	0	+	0	_	

Ainsi :
$$\mathcal{D}_{(3)} = [x_1, x_2] = [-\frac{1+\sqrt{13}}{2}, \frac{-1+\sqrt{13}}{2}].$$

• Soit $x \in \left[-\frac{1+\sqrt{13}}{2}, \frac{-1+\sqrt{13}}{2} \right] = [x_1, x_2].$

On procède par disjonction de cas selon le signe de (2x+1) (car, comme une racine est toujours positive, on a toujours : $\sqrt{-x^2 + x + 3} \ge 0$).

On remarque:

$$2x+1 \geqslant 0 \Leftrightarrow 2x \geqslant -1 \Leftrightarrow x \geqslant -\frac{1}{2}$$

Cherchons si : $-\frac{1}{2} \in [x_1, x_2]$.

$$-\frac{1}{2} \in [x_1, x_2] \Leftrightarrow -\frac{1+\sqrt{13}}{2} \leqslant -\frac{1}{2} \leqslant \frac{-1+\sqrt{13}}{2}$$

$$\Leftrightarrow \frac{1+\sqrt{13}}{2} \geqslant \frac{1}{2} \geqslant -\frac{-1+\sqrt{13}}{2}$$

$$\Leftrightarrow \frac{1+\sqrt{13}}{2} \geqslant \frac{1}{2} \geqslant \frac{1-\sqrt{13}}{2}$$

$$\Leftrightarrow 1+\sqrt{13} \geqslant 1 \geqslant 1-\sqrt{13}$$

$$\Leftrightarrow \sqrt{13} \geqslant 0 \geqslant -\sqrt{13}$$

La dernière assertion est vraie. Par raisonnement par équivalence, la première aussi.

On en déduit :
$$-\frac{1}{2} \in [x_1, x_2]$$
.

Deux cas se présentent alors.

 \times si $\underline{x} \in [x_1, -\frac{1}{2}[$, alors : 2x + 1 < 0. Or on a toujours : $\sqrt{-x^2 + x + 3} \geqslant 0$. Ainsi :

$$\sqrt{-x^2 + x + 3} \geqslant 0 > 2x + 1$$

L'inéquation (3) n'admet donc aucune solution sur $[x_1, -\frac{1}{2}[$.

 $\times \text{ si } x \in [-\frac{1}{2}, x_2], \text{ alors } :$

$$\sqrt{-x^2+x+3} \leqslant 2x+1 \quad \Leftrightarrow \quad \left(\sqrt{-x^2+x+3}\right)^2 \leqslant (2x+1)^2 \quad \begin{array}{l} \text{(par stricte croissance de} \\ \text{la fonction carr\'e sur } \mathbb{R}_+) \\ \\ \Leftrightarrow \quad -x^2+x+3 \leqslant 4x^2+4x+1 \\ \\ \Leftrightarrow \quad 0 \leqslant 5x^2+3x-2 \end{array}$$

On remarque que -1 est racine évidente du polynôme $5X^2 + 3X - 2$. On en déduit la factorisation:

$$5X^2 + 3X - 2 = 5\left(X - (-1)\right)\left(X - \frac{2}{5}\right) = 5\left(X + 1\right)\left(X - \frac{2}{5}\right)$$

On obtient le tableau de signes suivant.

x	$-\infty$		-1		$\frac{2}{5}$		$+\infty$
Signe de $5x^2 + 3x - 2$		+	0	_	0	+	

Sur l'intervalle $\left[-\frac{1}{2}, x_2\right]$, l'ensemble des solutions de (3) est donc :

$$\left(\left[-\infty, -1 \right] \cup \left[\frac{2}{5}, +\infty \right] \right) \cap \left[-\frac{1}{2}, x_2 \right]$$

$$= \left(\left[-\infty, -1 \right] \cap \left[-\frac{1}{2}, x_2 \right] \right) \cup \left(\left[\frac{2}{5}, +\infty \right] \cap \left[-\frac{1}{2}, x_2 \right] \right) \quad \begin{array}{l} (par \ distributivit\acute{e} \\ de \cap \ sur \cup) \end{array}$$

$$= \varnothing \cup \left(\left[\frac{2}{5}, +\infty \right] \cap \left[-\frac{1}{2}, x_2 \right] \right)$$

$$= \left[\frac{2}{5}, +\infty \right[\cap \left[-\frac{1}{2}, x_2 \right] \right)$$

Pour expliciter cette intersection, il reste à déterminer si $\frac{2}{5} \in [-\frac{1}{2}, x_2]$.

On a bien : $-\frac{1}{2} \leqslant \frac{2}{5}$. Démontrons alors : $\frac{2}{5} \leqslant x_2$.

$$\frac{2}{5} \leqslant x_2 \Leftrightarrow \frac{2}{5} \leqslant \frac{-1 + \sqrt{13}}{2}$$

$$\Leftrightarrow 4 \leqslant 5(-1 + \sqrt{13})$$

$$\Leftrightarrow 4 \leqslant -5 + 5\sqrt{13}$$

$$\Leftrightarrow 9 \leqslant 5\sqrt{13}$$

$$\Leftrightarrow \frac{9}{5} \leqslant \sqrt{13}$$

$$\Leftrightarrow \left(\frac{9}{5}\right)^2 \leqslant \left(\sqrt{13}\right)^2 \qquad \begin{array}{c} (par\ stricte\ croissance\ de\ la\ fonction\ carr\'e\ sur\ \mathbb{R}_+) \\ \Leftrightarrow \frac{81}{25} \leqslant 13$$

$$\Leftrightarrow 81 \leqslant 25 \times 13$$

Cette dernière assertion est vraie (en effet : $25 \times 13 \ge 25 \times 10 = 250 \ge 81$). Par raisonnement par équivalence, la première aussi. On en déduit :

$$\left[\frac{2}{5}, +\infty\right] \cap \left[-\frac{1}{2}, x_2\right] = \left[\frac{2}{5}, x_2\right]$$

Finalement, l'ensemble des solutions de (3) est : $\left[\frac{2}{5}, x_2\right] = \left[\frac{2}{5}, \frac{-1+\sqrt{13}}{2}\right]$.

Commentaire

On rappelle : $u \leqslant v$ $u^2 \leqslant v^2$.

En toute généralité, comme $\sqrt{u^2} = |u|$ (pour tout $u \in \mathbb{R}$), on a :

$$\forall u \in \mathbb{R}, \forall v \in \mathbb{R}, \quad (|u| \leqslant |v| \iff u^2 \leqslant v^2)$$

C'est pourquoi on procéde par disjonction de cas pour résoudre cette inéquation, en fonction du signe des quantités que l'on considère (ici $\sqrt{-x^2+x+3}$ et (2x+1)).

- 4. Résolvons l'inéquation (4).
 - Déterminons son ensemble de définition $\mathcal{D}_{(4)}$. Soit $x \in \mathbb{R}$.

L'inéquation (4) est bien définie
$$\Leftrightarrow -2x^2 + x + 1 \ge 0$$

Le réel 1 est racine évidente du polynôme $-2X^2 + X + 1$. On en déduit la factorisation suivante :

$$-2X^2 + X + 1 \; = \; -2\,\left(X^2 - \frac{1}{2}\;X - \frac{1}{2}\right) \; = \; -2\,(X-1)\left(X + \frac{1}{2}\right)$$

On obtient alors le signe du trinôme $-2x^2 + x + 1$.

x	$-\infty$		$-\frac{1}{2}$		1		$+\infty$
Signe de $-2x^2 + x + 1$		_	0	+	0	_	

Ainsi :
$$\mathcal{D}_{(4)} = [-\frac{1}{2}, 1].$$

• Soit $x \in [-\frac{1}{2}, 1]$.

$$|3-2x| \geqslant \sqrt{-2x^2+x+1} \Leftrightarrow (|3-2x|)^2 \geqslant \left(\sqrt{-2x^2+x+1}\right)^2 \quad \begin{array}{l} (par\ stricte\ croissance\ de\ la\ fonction\ carr\'e\ sur\ \mathbb{R}_+) \\ \Leftrightarrow (3-2x)^2 \geqslant -2x^2+x+1 \\ \Leftrightarrow 9-12x+4x^2 \geqslant -2x^2+x+1 \\ \Leftrightarrow 6x^2-13x+8 \geqslant 0 \end{array}$$

On note Δ le discriminant du polynôme $6X^2-13X+8.$ Alors :

$$\Delta = (-13)^2 - 4 \times 6 \times 8 = 169 - 4 \times 48 = 169 - 192 < 0$$

Le polynôme $6X^2 - 13X + 8$ n'admet pas de racine et son coefficient dominant est strictement positif. On en déduit que l'assertion $(6x^2 - 13x + 8 \ge 0)$ est toujours vraie. Par raisonnement par équivalence, la première assertion l'est également.

On en déduit que l'ensemble des solutions de (4) est : $\mathcal{D}_{(4)} = [-\frac{1}{2}, 1]$.

Exercice 6

Soit $n \in \mathbb{N}$. On considère les sommes :

$$S_n = \sum_{k=0}^n k$$
 et $T_n = \sum_{0 \le i < j \le n} \frac{i}{j}$

1. (*) Rappeler l'expression de S_n en fonction de n et la démontrer.

 $D\'{e}monstration.$

Démontrons par récurrence : $\forall n \in \mathbb{N}, \ \mathcal{P}(n)$

où
$$\mathcal{P}(n) : \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$
.

▶ Initialisation

• D'une part : $\sum_{k=0}^{0} k = 0$.

• D'autre part : $\frac{0(0+1)}{2} = 0$

D'où $\mathcal{P}(0)$.

▶ Hérédité : soit $n \in \mathbb{N}$.

Supposons $\mathcal{P}(n)$ et démontrons $\mathcal{P}(n+1)$ (i.e. $\sum_{k=0}^{n+1} k = \frac{(n+1)(n+2)}{2}$)

On a :
$$\sum_{k=0}^{n+1} k = \left(\sum_{k=0}^{n} k\right) + (n+1)$$
$$= \frac{n(n+1)}{2} + (n+1) \quad \begin{array}{c} (par \; hypoth\`{e}se \; de \\ r\'{e}currence) \end{array}$$
$$= \frac{n+1}{2}(n+2)$$

D'où $\mathcal{P}(n+1)$.

Par principe de récurrence :
$$\forall n \in \mathbb{N}, \ S_n = \frac{n(n+1)}{2}.$$

Commentaire

Notons que cette question est une pure question de cours. Il est inconcevable de ne pas savoir la traiter parfaitement.

2. En déduire une expression de T_n en fonction de n.

Démonstration. Soit $n \in \mathbb{N}$.

$$\begin{split} \sum_{0\leqslant i < j\leqslant n} \frac{i}{j} &= \sum_{j=1}^n \binom{j-1}{i} \frac{i}{j} \\ &= \sum_{j=1}^n \left(\frac{1}{j} \sum_{i=0}^{j-1} i\right) \\ &= \sum_{j=1}^n \left(\frac{1}{j} \times \frac{(j-1)\left((j-1)+1\right)}{2}\right) \quad \text{(d'après la question} \\ &= \sum_{j=1}^n \frac{1}{j} \frac{(j-1)j}{2} \\ &= \frac{1}{2} \sum_{j=1}^n (j-1) \\ &= \frac{1}{2} \sum_{k=0}^n k \quad \qquad \text{(avec le décalage d'indice } k = j-1) \\ &= \frac{1}{2} \times \frac{(n-1)\left((n-1)+1\right)}{2} \quad \qquad \text{(d'après la question précédente)} \end{split}$$

Finalement, pour tout $n \in \mathbb{N} : T_n = \frac{(n-1)n}{4}$.

Commentaire

Rappelons qu'il y a deux manières d'écrire la double somme $T_n = \sum_{0 \le i < j \le n} \frac{i}{j}$:

• d'une part :

$$\sum_{0 \leqslant i < j \leqslant n} \frac{i}{j} = \sum_{i=0}^{n-1} \left(\sum_{j=i+1}^{n} \frac{i}{j} \right) = \sum_{i=0}^{n-1} \left(i \sum_{j=i+1}^{n} \frac{1}{j} \right)$$

• d'autre part :

$$\sum_{0 \leqslant i < j \leqslant n} \frac{i}{j} = \sum_{j=1}^{n} \left(\sum_{i=0}^{j-1} \frac{i}{j} \right) = \sum_{j=1}^{n} \left(\frac{1}{j} \sum_{i=0}^{j-1} i \right)$$

Il reste à choisir laquelle de ces deux expressions est pertinente pour la résolution de l'exercice. Dans notre cas, il est possible de calculer la somme $\sum_{i=0}^{j-1} i$ mais pas la somme $\sum_{j=i+1}^{n} \frac{1}{j}$. C'est pour cela que l'on a opté pour l'utilisation de la 2^{nde} expression.

Exercice 7

1. Montrer que la suite $(n!)_{n\in\mathbb{N}}$ est strictement croissante.

 $D\'{e}monstration.$

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par : $\forall n\in\mathbb{N}, u_n=n!$.

Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = (n+1)! - n! = (n+1) \times n! - n! = n! \times ((n+1) - 1) = n! \times n > 0$$

La suite $(n!)_{n\in\mathbb{N}}$ est donc strictement croissante.

2. Montrer que, pour tout $n \in [2, +\infty[$, n! est un nombre pair.

 $D\'{e}monstration.$

Soit $n \in [2, +\infty)$. On sait :

$$n! = \prod_{i=1}^{n} i = 1 \times 2 \times \prod_{i=3}^{n} i \quad (car \ n \geqslant 2)$$

Ainsi, en notant $k = \prod_{i=3}^{n} i$, on remarque :

- × tout d'abord : $k \in \mathbb{N}$ (car k est un produit d'entiers naturels).
- \times ensuite : $n! = 2 \times k$

On en déduit que, pour tout $n \in [2, +\infty]$, n! est pair.

Commentaire

Revenons sur l'écriture :

$$\prod_{i=1}^{n} i = 1 \times 2 \times \prod_{i=3}^{n} i$$

Celle-ci n'est bien valable que pour $n \ge 2$. En effet :

 \times si n = 0, alors:

$$\prod_{i=1}^{0} i = \prod_{i \in \emptyset} i = 1$$

 \times $\sin n = 1$, alors :

$$\prod_{i=1}^{1} i = 1$$

Notons que cette écriture est bien vraie pour n=2 :

$$\prod_{i=3}^{2} i = \prod_{i \in \emptyset} i = 1$$

Ainsi:

$$\prod_{i=1}^{2} i = 1 \times 2 = 1 \times 2 \times \prod_{i=3}^{2} i$$

On admettra par la suite que pour tout $n \in [3, +\infty]$, n! est un multiple de 3.

- 3. Soit $(a, b) \in \mathbb{N}^2$ tel que : $a \leq b$.
 - a) Exprimer le quotient $\frac{b!}{a!}$ comme produit explicite d'entiers naturels.

Démonstration.

$$\frac{b!}{a!} = \frac{\prod_{i=1}^{b} i}{\prod_{i=1}^{a} i}$$

$$= \frac{\prod_{i=1}^{a} i \times \prod_{i=a+1}^{b} i}{\prod_{i=1}^{a} i} \quad (car \ a \leq b)$$

$$= \prod_{i=a+1}^{b} i$$

$$\frac{b!}{a!} = \prod_{i=a+1}^{b} i$$

Commentaire

Notons que si
$$a = b$$
, on a bien :
 \times d'une part : $\frac{b!}{a!} = \frac{b!}{b!} = 1$.

$$\times$$
 d'autre part : $\prod_{i=a+1}^b i = \prod_{i=b+1}^b i = \prod_{i\in\emptyset} i = 1$.

 \times d'autre part : $\prod_{i=a+1}^b i = \prod_{i=b+1}^b i = \prod_{i \in \varnothing} i = 1.$ L'égalité $\frac{b!}{a!} = \prod_{i=a+1}^b i$ est donc toujours bien vérifiée.

b) Que peut-on en déduire sur le réel $\frac{b!}{c!}$?

Démonstration.

D'après la question précédente, $\frac{b!}{a!}$ est un produit d'entiers. On en déduit que le réel $\frac{b!}{a!}$ est un entier.

4. Démontrer qu'il n'existe pas de couple d'entiers $(b,c)\in\mathbb{N}^2$ tel que : b!=c!+2.

Démonstration.

On procède par l'absurde. Supposons qu'il existe $(b,c) \in \mathbb{N}^2$ tel que : b! = c! + 2. Trois cas se présentent.

• si $c \in \{0, 1\}$, alors :

$$b! = c! + 2 = 1 + 2 = 3$$

Absurde! En effet, la fonction $(n!)_{n\in\mathbb{N}}$ est strictement croissante et 2!=2 et 3!=6. Il n'existe donc pas d'entier b tel que : b! = 3.

• si c = 2, alors :

$$b! = c! + 2 = 2 + 2 = 4$$

Absurde! En effet, la fonction $(n!)_{n\in\mathbb{N}}$ est strictement croissante et 2!=2 et 3!=6. Il n'existe donc pas d'entier b tel que : b!=4.

- si $c \geqslant 3$, alors :
 - × on remarque tout d'abord : b! = c! + 2 > c!. Or, d'après la question 1, la suite $(n!)_{n \in \mathbb{N}}$ est strictement croissante. On en déduit : b > c. Ainsi : $b \ge c \ge 3$.
 - × D'après la question 3.b), on en déduit que $\frac{b!}{3!}$ et $\frac{c!}{3!}$ sont des entiers.

$$b! = c! + 2$$

donc
$$\frac{b!}{3!} = \frac{c!}{3!} + \frac{2}{3!}$$

d'où
$$\frac{b!}{6} - \frac{c!}{6} = \frac{2}{6}$$

ainsi
$$\frac{b!}{6} - \frac{c!}{6} = \frac{1}{3}$$

Comme $\frac{b!}{6}$ et $\frac{c!}{6}$ sont des entiers, alors $\frac{1}{3} = \frac{b!}{6} - \frac{c!}{6}$ est un entier.

Absurde!

Finalement, il n'existe pas de couple $(b, c) \in \mathbb{N}^2$ tel que : b! = c! + 2.