DS1

On traitera OBLIGATOIREMENT les questions portant un astérisque. Elles sont au nombre de 6. Dans le cas contraire, la note finale se verra divisée par 2.

Exercice 1

Écrire de manière mathématique les propositions suivantes ainsi que leur négation. On évaluera ensuite la véracité de ces propositions.

1. Tout nombre réel x est inférieur ou égal à son sinus.

Démonstration.

Cette proposition s'écrit de la façon suivante : $\forall x \in \mathbb{R}, x \leq \sin(x).$

Sa négation est : $\exists x_0 \in \mathbb{R}, x_0 > \sin(x_0)$.

Démontrons que la proposition 1. est fausse.

On note : $x_0 = 2$. Alors :

- d'une part, par propriété de la fonction $\sin : \sin(x_0) \leq 1$.
- d'autre part : $x_0 > 1$ Ainsi : $x_0 > 1 \ge \sin(x_0)$.

La proposition 1. est donc fausse.

Commentaire

On démontre ici que la négation de la proposition 1. est vraie. Cette négation est une proposition quantifiée existentiellement. Il faut donc exhiber un réel x_0 vérifiant $(x_0 > \sin(x_0))$ pour conclure quant à sa véracité.

2. (*) Tout réel de carré strictement supérieur à 9, est lui-même de valeur absolue supérieure ou égale à 3.

Démonstration.

Cette proposition s'écrit de la façon suivante :
$$\forall x \in \mathbb{R}, (x^2 > 9) \Rightarrow (|x| \geqslant 3).$$

Sa négation est :
$$\exists x_0 \in \mathbb{R}, (x_0^2 > 9)$$
 ET $(|x_0| < 3)$.

Démontrons que la propriété 2. est vraie.

Soit $x \in \mathbb{R}$.

Supposons : $x^2 > 9$.

Par croissance de la fonction $\sqrt{\cdot}$ sur $\mathbb{R}_+:\sqrt{x^2}\geqslant\sqrt{9}$. D'où :

$$|x| \geqslant 3$$

La proposition 2. est donc vraie.

3. Le trinôme $z^2 - 3z + 3$ admet deux racines distinctes dans \mathbb{R} .

 $D\'{e}monstration.$

Cette proposition s'écrit de la façon suivante :
$$\exists (z_1, z_2) \in \mathbb{R}^2, (z_1 \neq z_2)$$
 ET $(z_1^2 - 3z_1 + 3 = 0)$ ET $(z_2^2 - 3z_2 + 3 = 0)$.

Sa négation est :
$$\forall (z_1, z_2) \in \mathbb{R}^2$$
, $(z_1 = z_2)$ OU $(z_1^2 - 3z_1 + 3 \neq 0)$ OU $(z_2^2 - 3z_2 + 3 \neq 0)$.

Démontrons que la proposition 3. est fausse.

On note Δ le discriminant du polynôme $P(X) = X^2 - 3X + 3$. Alors :

$$\Delta = (-3)^2 - 4 \times 1 \times 2 = 9 - 12 < 0$$

Le polynôme P n'admet donc aucune racine réelle. En particulier, le trinôme $z^2 - 3z + 3$ n'admet pas deux racines distinctes.

4. La composée de deux fonctions paires est paire.

Démonstration.

$$\text{Cette proposition s'\'ecrit de la façon suivante}: \\ \forall (f,g) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \, \left(\left(\forall x \in \mathbb{R}, \ f(-x) = f(x)\right) \ \text{ ET } \left(\forall x \in \mathbb{R}, \ g(-x) = g(x)\right)\right) \ \Rightarrow \ \left(\forall x \in \mathbb{R}, \ (g \circ f)(-x) = (g \circ f)(x)\right).$$

$$\text{Sa n\'egation est}: \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\forall x \in \mathbb{R}, f_0(-x) = f_0(x)\right) \text{ ET } \left(\forall x \in \mathbb{R}, g_0(-x) = g_0(x)\right) \text{ ET } \left(\exists x_0 \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\forall x \in \mathbb{R}, f_0(-x) = f_0(x)\right) \text{ ET } \left(\forall x \in \mathbb{R}, g_0(-x) = g_0(x)\right) \text{ ET } \left(\exists x_0 \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\forall x \in \mathbb{R}, f_0(-x) = f_0(x)\right) \text{ ET } \left(\forall x \in \mathbb{R}, g_0(-x) = g_0(x)\right) \text{ ET } \left(\exists x_0 \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\forall x \in \mathbb{R}, f_0(-x) = f_0(x)\right) \text{ ET } \left(\forall x \in \mathbb{R}, g_0(-x) = g_0(x)\right) \text{ ET } \left(\exists x_0 \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right) \\ \exists (f_0,g_0) \in \left(\mathbb{R}^{\mathbb{R}}\right)^2, \left(\exists x \in \mathbb{R}, (g_0 \circ f_0)(-x_0) \neq (g_0 \circ f_0)(x_0)\right)$$

Démontrons que la proposition 4. est vraie.

Soit $(f,g) \in (\mathbb{R}^{\mathbb{R}})^2$.

Supposons que f et g sont paires. Démontrons que $g \circ f$ est paire.

Soit $x \in \mathbb{R}$.

$$(g \circ f)(-x) = g(f(-x))$$

$$= g(f(x)) \quad (car f est paire)$$

$$= (g \circ f)(x)$$

Ainsi, la fonction $g \circ f$ est paire.

La proposition 4. est donc vraie.

Commentaire

Notons que, pour que la composée $g \circ f$ soit paire, il suffit que la fonction f soit paire. En effet, dans la démonstration ci-dessus, la parité de g n'est pas utile. On a donc l'implication suivante :

$$f \text{ paire } \Rightarrow g \circ f \text{ paire}$$

Déterminer, pour chacune des assertions suivantes, si elle est vraie ou fausse. Justifier toutes vos réponses.

1.
$$\exists (m, M) \in \mathbb{R}^2, \forall x \in \mathbb{R}, m \leqslant x^2 \leqslant M$$

 $D\'{e}monstration.$

On cherche à démontrer que cette proposition est fausse. Pour cela, on va démontrer que la négation de 1. est vraie. La proposition 1. s'écrit également :

$$\exists (m,M) \in \mathbb{R}^2, \ \forall x \in \mathbb{R}, \ (m \leqslant x^2) \ \ \text{ET} \ \ (x^2 \leqslant M)$$

On cherche donc à démontrer :

$$\forall (m,M) \in \mathbb{R}^2, \exists x_0 \in \mathbb{R}, (m > x_0^2) \text{ OU } (x_0^2 > M)$$

Soit $(m, M) \in \mathbb{R}^2$.

On note: $x_0 = \sqrt{|M+1|}$. Alors:

$$x_0^2 = (\sqrt{|M+1|})^2 = |M+1|$$

Or: M < M + 1. D'où, par transitivité :

$$M < M+1 \leqslant |M+1|$$

Ainsi : $M < x_0^2$. On a donc bien démontré :

$$(m > x_0^2)$$
 OU $(x_0^2 > M)$

La proposition 1. est donc fausse.

2.
$$(*) \forall x \in \mathbb{R}, (x > 2) \Rightarrow (x \geqslant 3)$$

 $D\'{e}monstration.$

On cherche à démontrer que cette proposition est fausse. Pour cela, on va démontrer que la négation de 2. est vraie. On cherche donc à démontrer :

$$\exists x_0 \in \mathbb{R}, \ (x_0 > 2) \ \text{ ET } \ (x_0 < 3)$$

On note : $x_0 = \frac{5}{2}$. Alors :

 \times d'une part : $x_0 > 2$.

 \times d'autre part : $x_0 < 3$.

Ainsi : $(x_0 > 2)$ ET $(x_0 < 3)$

3. $\exists ! x \in \mathbb{R}, \cos(x) = 0$

 $D\'{e}monstration.$

On cherche à démontrer que cette proposition est fausse. Pour cela, on va démontrer que la négation de 3. est vraie. On cherche donc à démontrer :

$$\left(\forall x \in \mathbb{R}, \cos(x) \neq 0\right) \text{ OU } \left(\exists (x_1, x_2) \in \mathbb{R}^2, \ (x_1 \neq x_2) \text{ ET } \left(\cos(x_1) = 0\right) \text{ ET } \left(\cos(x_2) = 0\right)\right)$$

On note : $x_1 = -\frac{\pi}{2}$ et $x_2 = \frac{\pi}{2}$. On obtient :

$$\times x_1 \neq x_2$$

$$\times \cos(x_1) = \cos\left(-\frac{\pi}{2}\right) = 0$$

$$\times \cos(x_2) = \cos\left(\frac{\pi}{2}\right) = 0$$

On a donc démontré :

$$\exists (x_1, x_2) \in \mathbb{R}^2, (x_1 \neq x_2) \text{ ET } (\cos(x_1) = 0) \text{ ET } (\cos(x_2) = 0)$$

La proposition 3. est donc fausse.

Commentaire

On prendra garde à la négation de la proposition $(\exists! x \in E, p(x))$. En effet, il faut nier à la fois l'existence (symbole \exists) et l'unicite (symbole !). Ainsi, dire qu'il n'existe pas un unique $x \in E$ tel que px est vérifiée, c'est dire :

 \times soit qu'aucun élément $x \in E$ ne vérifie p(x):

$$\forall x \in E, \ \text{NON}(p(x))$$

imes soit qu'il existe au moins 2 éléments distincts qui vérifient p(x) :

$$\exists (x_1, x_2) \in E^2, (x_1 \neq x_2) \text{ ET } p(x_1) \text{ ET } p(x_2)$$

On en déduit que la négation de $(\exists! x \in E, px)$ est :

$$\Big(\forall x \in E, \ \operatorname{NON}(p(x))\Big) \ \ \operatorname{OU} \ \ \Big(\exists (x_1, x_2) \in E^2, (x_1 \neq x_2) \ \ \operatorname{ET} \ \ p(x_1) \ \ \operatorname{ET} \ \ p(x_2)\Big)$$

4. pour tout $n \in \mathbb{N}$, $n^3 - n$ est divisible par 3.

 $D\'{e}monstration.$

Soit $n \in \mathbb{N}$. Trois cas se présentent :

• s'il existe $k \in \mathbb{N}$ tel que : n = 3k, alors :

$$n^3 - n = (3k)^3 - 3k = 3^3 k^3 - 3k = 3 \times (3^2 k^3 - k)$$

Or: $3^2 k^3 - k \in \mathbb{N}$. Ainsi, $n^3 - n$ est divisible par 3.

• s'il existe $k \in \mathbb{N}$ tel que : n = 3k + 1, alors :

$$n^3 - n = (3k+1)^3 - (3k+1) = 3^3 k^3 + 3^2 k^2 + 3k + 1 - (3k+1) = 3 \times (3^2 k^3 + 3 k^2)$$

Or: $3^2 k^3 + 3 k^2 \in \mathbb{N}$. Ainsi, $n^3 - n$ est divisible par 3.

• s'il existe $k \in \mathbb{N}$ tel que : n = 3k + 2, alors :

$$n^{3} - n = (3k+2)^{3} - (3k+2)$$

$$= 3^{3}k^{3} + 3^{2}k^{2} \times 2 + 3k \times 2^{2} + 2^{3} - (3k+2)$$

$$= 3^{3}k^{3} + 3 \times 6k^{2} + 3^{2}k + 6$$

$$= 3 \times (3^{2}k^{3} + 6k^{2} + 3k + 2)$$

Or : $3^2 k^3 + 6 k^2 + 3 k + 2 \in \mathbb{N}$. Ainsi, $n^3 - n$ est divisible par 3.

Finalement, dans tous les cas, l'entier $n^3 - n$ est divisible par 3.

La proposition 4. est donc vraie.

4

Pour chacune des propositions $P(\cdot)$ ci-dessous, déterminer si la proposition $Q(\cdot)$ est nécessaire, suffisante, les deux à la fois ou rien du tout (réponse à justifier).

1. Paramètre : $f: \mathbb{R} \to \mathbb{R}$.

Propositions: $P(f): (\forall (x,y) \in \mathbb{R}^2, \ f(x) = f(y)) \text{ et } Q(f): (\exists \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = \lambda).$

 $D\'{e}monstration.$

Soit $f: \mathbb{R} \to \mathbb{R}$.

• Démontrons : $P(f) \Rightarrow Q(f)$.

Supposons : P(f), i.e. :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x) = f(y)$$

Démontrons : $\exists \lambda \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = \lambda$.

Soit $x \in \mathbb{R}$. On applique P(f) avec $y = 1 \in \mathbb{R}$. On obtient:

$$f(x) = f(1)$$

On note alors : $\lambda = f(1)$. On a démontré :

$$\forall x \in \mathbb{R}, \ f(x) = \lambda$$

D'où : Q(f).

La proposition Q(f) est donc une condition nécessaire à P(f).

• Démontrons : $Q(f) \Rightarrow P(f)$.

Supposons : Q(f). Il existe donc $\lambda \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}, f(x) = \lambda$.

Démontrons : P(f).

Soit $(x,y) \in \mathbb{R}^2$. D'après Q(f):

 \times d'une part : $f(x) = \lambda$,

 \times d'autre part : $f(y) = \lambda$.

Ainsi : f(x) = f(y).

D'où : P(f).

La proposition Q(f) est une condition suffisante à P(f).

2. (*) Paramètre : $x \in \mathbb{R}$.

Propositions: $P(x): (x^2 + 4x - 5 = 0)$ et $Q(x): (\sqrt{x^2 + 4x - 5} = 0)$.

 $D\'{e}monstration.$

- Déterminons l'ensemble de définition de ces équations.
 - × Tout d'abord, l'ensemble de définition \mathcal{D}_P de P est \mathbb{R} .
 - \times Ensuite, pour tout $x \in \mathbb{R}$, on remarque:

$$x^2 + 4x - 5 = (x - 1)(x + 5)$$

Ainsi:

$$x^2+4x-5\geqslant 0 \quad \Leftrightarrow \quad (x\leqslant -5) \ \, \mathrm{OU} \ \, (x\geqslant 1)$$

L'ensemble de définition \mathcal{D}_Q de Q est donc : $]-\infty,-5] \cup [1,+\infty[$.

- Soit $x \in \mathbb{R}$.
 - × L'implication $(P(x) \Rightarrow Q(x))$ est fausse.

En effet, en notant : $x_0 = 0$, alors :

- $x_0 \in \mathcal{D}_P$
- $x_0 \notin \mathcal{D}_Q$

La proposition Q(x) n'est donc pas une condition nécessaire à P(x).

 \times Démontrons : $Q(x) \Rightarrow P(x)$.

Supposons : Q(x), alors :

$$\begin{cases} x \in]-\infty, -5] \cup [1, +\infty[\\ \sqrt{x^2 + 4x - 5} = 0 \end{cases}$$

On en déduit, par injectivité de la fonction $\sqrt{\cdot}$ sur $\mathbb{R}_+: x^2 + 4x - 5 = 0$.

D'où : P(x).

La proposition Q(x) est donc une condition suffisante à P(x).

Commentaire

La condition portant sur le paramètre x $(x \in \mathbb{R})$ est cruciale pour la réponse à cette question. En effet :

- nous venons de démontrer que, pour tout $x \in \mathbb{R}$, P(x) et Q(x) ne sont pas équivalentes.
- cependant, pour tout $x \in]-\infty, -5] \cup [1, +\infty[$, par injectivité de $\sqrt{\cdot}$ sur \mathbb{R}_+ :

$$Q(x) \Leftrightarrow \sqrt{x^2 + 4x - 5} = 0 \Leftrightarrow x^2 + 4x - 5 = 0 \Leftrightarrow P(x)$$

Ainsi, si l'énoncé avait mis pour condition sur $x: x \in]-\infty, -5] \cup [1, +\infty[$, il aurait fallu conclure que la proposition Q(x) était une condition nécessaire et suffisante à P(x).

3. Paramètre : $n \in \mathbb{Z}$.

Propositions: P(n): (n multiple de 2) et Q(n): (n est multiple de 4 ou de 6).

 $D\'{e}monstration.$

Soit $n \in \mathbb{Z}$.

• L'implication $(P(n) \Rightarrow Q(n))$ est fausse.

En effet, en notant : $n_0 = 2$, alors :

- \times n_0 est un multiple de 2. D'où : $P(n_0)$.
- $\times n_0$ n'est ni un multiple de 4, ni un multiple de 6. D'où : $NON(Q(n_0))$.

La proposition Q(n) n'est donc pas une condition nécessaire à P(n).

• Démontrons : $Q(n) \Rightarrow P(n)$.

Supposons : Q(n). Deux cas se présentent :

 \times si n est un multiple de 4, alors il existe $k \in \mathbb{Z}$ tel que : n = 4k. On en déduit :

$$n = 4k = 2 \times 2k$$

Or : $2k \in \mathbb{Z}$. Ainsi, n est un multiple de 2.

 \times si n n'est pas un multiple de 4, alors, comme Q(n) est vérifiée, on en déduit que n est un multiple de 6. Il existe donc $k \in \mathbb{Z}$ tel que : n = 6k. Ainsi :

$$n = 6k = 2 \times 3k$$

Or : $3k \in \mathbb{Z}$. On en conclut que n est un multiple de 2.

Finalement, dans tous les cas, n est un multiple de 2. D'où : Pn.

La proposition
$$Q(n)$$
 est donc une condition suffisante à $P(n)$.

4. Paramètres : $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \mathbb{R}$.

Propositions: $P((u_n), \ell)$: $((u_n)$ converge vers $\ell)$ et $Q((u_n), \ell)$: $(\forall n \ge 3, \frac{1}{n^2} \le |u_n - \ell| \le \frac{1}{n})$.

 $D\'{e}monstration.$

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Soit $\ell \in \mathbb{R}$.

• L'implication $(P((u_n), \ell) \Rightarrow Q((u_n), \ell))$ est fausse. En effet, on note $\ell_0 = 0$ et (v_n) la suite définie par :

$$\forall n \in [3, +\infty[, \quad v_n = \frac{1}{n^3}]$$

Alors:

× la suite (v_n) converge vers $0 = \ell_0$. D'où : $P((v_n), \ell_0)$.

× pour tout $n \geqslant 3$: $|v_n - \ell_0| = \left|\frac{1}{n^3} - 0\right| = \frac{1}{n^3}$. Donc:

$$|v_n - \ell_0| = \frac{1}{n^3} < \frac{1}{n^2}$$

D'où : $NON(Q((v_n), \ell_0))$.

La proposition $Q((u_n), \ell)$ n'est donc pas une condition nécessaire à $P((u_n), \ell)$.

• Démontrons : $Q((u_n), \ell) \Rightarrow P((u_n), \ell)$. Supposons : $Q((u_n), \ell)$. Alors :

$$\forall n \geqslant 3, \quad \frac{1}{n^2} \leqslant |u_n - \ell| \leqslant \frac{1}{n}$$

Or:

 \times d'une part : $\lim_{n \to +\infty} \frac{1}{n^2} = 0$,

 \times d'autre part : $\lim_{n \to +\infty} \frac{1}{n} = 0$.

Par théorème d'encadrement : $\lim_{n \to +\infty} |u_n - \ell| = 0$. Autrement dit : $\lim_{n \to +\infty} u_n = \ell$.

D'où : $P((u_n), \ell)$.

La proposition $Q((u_n), \ell)$ est donc une condition suffisante à $P((u_n), \ell)$.

Résoudre les équations et inéquations suivantes, d'inconnue $x \in \mathbb{R}$.

1.
$$\sqrt{x(x-3)} = \sqrt{3x-5}$$

3. (*)
$$2x - 7 \leq \sqrt{4x - 11}$$

2.
$$(*) (\ln(x))^2 = -2 - 3 \ln(x)$$

4.
$$|x-1| > |x^2-2|$$

 $D\'{e}monstration.$

- 1. Résolvons l'équation (1).
 - Déterminons son ensemble de définition $\mathcal{D}_{(1)}$. Soit $x \in \mathbb{R}$.

L'équation (1) est bien définie
$$\Leftrightarrow (x(x-3) \ge 0)$$
 ET $(3x-5 \ge 0)$ $\Leftrightarrow (x(x-3) \ge 0)$ ET $\left(x \ge \frac{5}{3}\right)$

On a de plus le tableau de signes suivant :

x	$-\infty$		0		3		$+\infty$
x		_	0	+		+	
x-3		_		_	0	+	
x(x-3)		+	0	_	0	+	

Ainsi:

L'équation (1)
$$\Leftrightarrow$$
 $\left((x\leqslant 0) \text{ OU } (x\geqslant 3)\right) \text{ ET } \left(x\geqslant \frac{5}{3}\right)$ \Leftrightarrow $x\geqslant 3$

Finalement :
$$\mathcal{D}_{(1)} = [3, +\infty[$$
.

• Soit $x \in [3, +\infty[$.

$$\sqrt{x(x-3)} = \sqrt{3x-5} \quad \Leftrightarrow \quad x(x-3) = 3x-5 \qquad \begin{array}{l} (par\ injectivit\'e\ de\ la\\ fonction\ \sqrt{\cdot}\ sur\ \mathbb{R}_+) \\ \Leftrightarrow \quad x^2-3x=3x-5 \\ \Leftrightarrow \quad x^2-6x+5=0 \\ \Leftrightarrow \quad (x-1)\ (x-5)=0 \\ \Leftrightarrow \quad (x=1)\ \ \text{OU}\ \ (x=5) \\ \Leftrightarrow \quad x=5 \qquad \qquad (car: x\geqslant 3) \end{array}$$

On en déduit que l'ensemble des solutions de (1) est : {5}.

- 2. Résolvons l'équation (2).
 - Déterminons son ensemble de définition $\mathcal{D}_{(2)}$. La fonction ln est définie sur \mathbb{R}_+^* .

Ainsi :
$$\mathcal{D}_{(2)} = \mathbb{R}_+^*$$
.

• Soit $x \in \mathbb{R}_+^*$.

L'ensemble des solutions de (2) est donc : $\{e^{-1}, e^{-2}\}$.

- 3. Résolvons l'inéquation (3).
 - Déterminons son ensemble de définition $\mathcal{D}_{(3)}$. Soit $x \in \mathbb{R}$.

L'inéquation (3) est bien définie
$$\Leftrightarrow 4x - 11 \ge 0 \Leftrightarrow x \ge \frac{11}{4}$$

Finalement :
$$\mathcal{D}_{(4)} = \left[\frac{11}{4}, +\infty\right[$$
.

• Soit $x \in \left[\frac{11}{4}, +\infty\right[$. Deux cas se présentent :

$$\times \sin x < \frac{7}{2}$$
, alors:

$$2x-7~<~0~~{\rm ET}~~\sqrt{4x-11}\geqslant 0$$

Ainsi, par transitivité:

$$2x - 7 < 0 \leqslant \sqrt{4x - 11}$$

L'inégalité (3) est donc vérifiée sur tout l'ensemble $\left[\frac{11}{4}, +\infty\right[\cap \left] -\infty, \frac{7}{2}\right[= \left[\frac{11}{4}, \frac{7}{2}\right[$

$$\times \underline{\sin} x \ge \frac{7}{2}$$
, alors:

$$2x - 7 \leqslant \sqrt{4x - 11} \quad \Leftrightarrow \quad (2x - 7)^2 \leqslant 4x - 11 \qquad \begin{array}{l} (par \ stricte \ croissance \ de \ la \\ fonction \ x \mapsto x^2 \ sur \ \mathbb{R}_+) \end{array}$$

$$\Leftrightarrow \quad 4x^2 - 28x + 49 \leqslant 4x - 11$$

$$\Leftrightarrow \quad 4x^2 - 32x + 60 \leqslant 0$$

$$\Leftrightarrow \quad x^2 - 8x + 15 \leqslant 0$$

On note Δ le discriminant du polynôme P défini par : $P(X) = X^2 - 8X + 15$. Alors :

$$\Delta = (-8)^2 - 4 \times 1 \times 15 = 64 - 60 = 4$$

Le polynôme P admet donc deux racines réelles distinctes :

$$x_1 = \frac{8 - \sqrt{\Delta}}{2} = \frac{8 - 2}{2} = \frac{6}{2} = 3$$

$$x_2 = \frac{8 + \sqrt{\Delta}}{2} = \frac{8 + 2}{2} = \frac{10}{2} = 5$$

On en déduit :

$$2x - 7 \le \sqrt{4x - 11} \iff x^2 - 8x + 15 \le 0 \iff x \in [3, 5]$$

L'inégalité (3) est donc vérifiée sur
$$\left\lceil \frac{11}{4}, +\infty \right\rceil \cap \left\lceil \frac{7}{2}, +\infty \right\rceil \cap \left\lceil 3, 5 \right\rceil = \left\lceil \frac{7}{2}, 5 \right\rceil$$
.

Finalement, l'ensemble des solutions de (3) est :
$$\left[\frac{11}{4}, \frac{7}{2}\right] \cup \left[\frac{7}{2}, 5\right] = \left[\frac{11}{4}, 5\right]$$
.

Commentaire

On rappelle : u = v \swarrow $u^2 = v^2$.

En toute généralité, comme $\sqrt{u^2} = |u|$ (pour tout $u \in \mathbb{R}$), on a :

$$\forall u \in \mathbb{R}, \forall v \in \mathbb{R}, \quad (|u| = |v| \iff u^2 = v^2)$$

C'est pour quoi on procéde par disjonction de cas pour résoudre cette in équation, en fonction du signe des quantités que l'on considère (ici (2x-7)).

- 4. Résolvons l'inéquation (4).
 - Déterminons son ensemble de définition $\mathcal{D}_{(4)}$.

$$\mathcal{D}_{(4)}=\mathbb{R}$$

• Soit $x \in \mathbb{R}$. Effectuons un tableau de signe pour savoir quelle est la disjonction de cas adaptée à la résolution de l'inéquation :

$$|x-1| > |x^2-2|$$

x	$-\infty$		$-\sqrt{2}$		1		$\sqrt{2}$		$+\infty$
x-1		_		_	0	+		+	
$x^2 - 2$		+	0	_		_	0	+	

Quatre cas se présentent alors :

$$\times$$
 si $x \in]-\infty, -\sqrt{2}]$, alors:

$$x-1 \leqslant 0$$
 et $x^2-2 \geqslant 0$

Ainsi:

$$|x-1| > |x^2-2| \Leftrightarrow -(x-1) > x^2-2 \Leftrightarrow 0 > x^2+x-3$$

On note Δ le discriminant du polynôme P défini par : $P(X) = X^2 + X - 3$. Alors :

$$\Delta = 1^2 - 4 \times 1 \times (-3) = 1 + 12 = 13 > 0$$

Le polynôme P admet donc exactement deux racines réelles :

$$x_1 = \frac{-1 - \sqrt{\Delta}}{2} = \frac{-1 - \sqrt{13}}{2} = -\frac{1 + \sqrt{13}}{2}$$
 et $x_2 = \frac{-1 + \sqrt{\Delta}}{2} = -\frac{1 - \sqrt{13}}{2}$

On en déduit :

$$|x-1| > |x^2 - 2[\Leftrightarrow x \in \left] - \frac{1 + \sqrt{13}}{2}, -\frac{1 - \sqrt{13}}{2} \right[$$

$$\Leftrightarrow x \in \left[-\frac{1 + \sqrt{13}}{2}, -\sqrt{2} \right] \qquad (car : x \leqslant -\sqrt{2})$$

Ainsi, tous les réels de l'intervalle $\left] -\frac{1+\sqrt{13}}{2}, -\sqrt{2} \right]$ sont solutions de l'inéquation (4).

$$\times$$
 si $x \in]-\sqrt{2},1]$, alors:

$$x - 1 \leqslant 0 \quad \text{et} \quad x^2 - 2 \leqslant 0$$

Ainsi:

$$|x-1| > |x^2-2| \Leftrightarrow -(x-1) > -(x^2-2) \Leftrightarrow -x+1 > -x^2+2 \Leftrightarrow x^2-x-1 > 0$$

On note Δ le discriminant du polynôme Q défini par : $Q(X) = X^2 - X - 1$. Alors :

$$\Delta = (-1)^2 - 4 \times 1 \times (-1) = 1 + 4 = 5 > 0$$

Le polynôme Q admet donc exactement deux racines réelles :

$$y_1 = \frac{1 - \sqrt{\Delta}}{2} = \frac{1 - \sqrt{5}}{2}$$
 et $y_2 = \frac{1 + \sqrt{\Delta}}{2} = \frac{1 + \sqrt{5}}{2}$

On en déduit :

$$|x-1| > |x^2 - 2[\Leftrightarrow x \in \left] -\infty, \frac{1 - \sqrt{5}}{2} \right[\cup \left] \frac{1 + \sqrt{5}}{2}, +\infty \right[$$

$$\Leftrightarrow x \in \left] -\sqrt{2}, \frac{1 - \sqrt{5}}{2} \right[\qquad (car: -\sqrt{2} < x \le 1) \right]$$

Ainsi, tous les réels de l'intervalle $\left| -\sqrt{2}, \frac{1-\sqrt{5}}{2} \right|$ sont solutions de l'inéquation (4).

 \times si $x \in]1, \sqrt{2}]$, alors:

$$x-1 \geqslant 0$$
 et $x^2-2 \leqslant 0$

Ainsi:

$$|x-1| > |x^2-2| \Leftrightarrow x-1 > -(x^2-2) \Leftrightarrow x-1 > -x^2+2 \Leftrightarrow x^2+x-3 > 0$$

D'après l'étude du polynôme P effectuée plus haut :

$$|x-1| > |x^2 - 2[\Leftrightarrow x \in \left] -\infty, -\frac{1+\sqrt{13}}{2} \right[\cup \left] -\frac{1-\sqrt{13}}{2}, +\infty \right[$$
$$\Leftrightarrow x \in \left] -\frac{1-\sqrt{13}}{2}, \sqrt{2} \right] \quad (car: 1 < x \leqslant \sqrt{2})$$

Ainsi, tous les réels de l'intervalle $\left] -\frac{1-\sqrt{13}}{2}, \sqrt{2} \right]$ sont solutions de l'inéquation (4).

 $\times \text{ si } x \in]\sqrt{2}, +\infty[, \text{ alors } :$

$$x-1 \geqslant 0$$
 et $x^2-2 \geqslant 0$

Ainsi:

$$|x-1| > |x^2-2| \Leftrightarrow x-1 > x^2-2 \Leftrightarrow 0 > x^2-x-1$$

D'après l'étude du polynôme Q effectuée plus haut :

$$|x - 1| > |x^2 - 2[\Leftrightarrow x \in \left] \frac{1 - \sqrt{5}}{2}, \frac{1 + \sqrt{5}}{2} \right[$$

$$\Leftrightarrow x \in \left] \sqrt{2}, \frac{1 + \sqrt{5}}{2} \right] \qquad (car : \sqrt{2} < x)$$

Ainsi, tous les réels de l'intervalle $\left]\sqrt{2}, \frac{1+\sqrt{5}}{2}\right[$ sont solutions de l'inéquation (4).

Finalement, l'ensemble des solutions de (4) est :

$$\left] - \frac{1 + \sqrt{13}}{2}, -\sqrt{2} \right] \cup \left] - \sqrt{2}, \frac{1 - \sqrt{5}}{2} \right[\cup \left] - \frac{1 - \sqrt{13}}{2}, \sqrt{2} \right] \cup \left] \sqrt{2}, \frac{1 + \sqrt{5}}{2} \right[$$

On note (u_n) la suite de Fibonacci. Elle est définie par :

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n \end{cases}$$

1. (*) Démontrer : $\forall n \in \mathbb{N}, u_n \geqslant n-1$.

 $D\'{e}monstration.$

Démontrons par récurrence double : $\forall n \in [2, +\infty], \mathcal{P}(n)$ où $\mathcal{P}(n) : u_n \geqslant n-1$.

- ▶ Initialisation :
 - Tout d'abord :
 - \times d'une part, d'après l'énoncé : $u_2 = u_1 + u_0 = 1$,
 - \times d'autre part : 2-1=1.

Ainsi : $u_2 \geqslant 2 - 1$. D'où : $\mathcal{P}(2)$.

- Ensuite:
 - \times d'une part, d'après l'énoncé : $u_3 = u_2 + u_1 = 2$,
 - \times d'autre part : 3-1=2.

Ainsi : $u_3 \geqslant 3 - 1$. D'où : $\mathcal{P}(3)$.

▶ Hérédité : soit $n \in [2, +\infty]$.

Supposons $\mathscr{P}(n)$ et $\mathscr{P}(n+1)$. Démontrons $\mathscr{P}(n+2)$ (i.e. $u_{n+2} \geqslant (n+2)-1$).

Par définition de u_{n+2} :

$$u_{n+2} = u_{n+1} + u_n$$

$$\geqslant ((n+1) - 1) + (n-1) \quad (d'après \mathcal{P}(n+1) \text{ et } \mathcal{P}(n))$$

$$= 2n-1$$

Or:

$$\begin{array}{ccc} n & \geqslant & 2 \\ \\ \mathrm{donc} & 2n & \geqslant & n+2 \\ \\ \mathrm{d'où} & 2n-1 & \geqslant & n+1 \end{array}$$

Ainsi, par transitivité : $u_{n+2} \ge 2n - 1 \ge n + 1$.

D'où $\mathcal{P}(n+1)$.

Par principe de récurrence : $\forall n \geq 2, \mathcal{P}(n)$.

Par ailleurs:

- Tout d'abord :
 - \times d'une part, d'après l'énoncé : $u_0 = 0$,
 - \times d'autre part : 0 1 = -1.

Ainsi : $u_0 \geqslant 0 - 1$. D'où : $\mathcal{P}(0)$.

- Ensuite:
 - \times d'une part, d'après l'énoncé : $u_1 = 1$,
 - \times d'autre part : 1 1 = 0.

Ainsi : $u_1 \geqslant 1 - 1$. D'où : $\mathcal{P}(1)$.

Finalement: $\forall n \in \mathbb{N}, u_n \geqslant n-1.$

2. Démontrer, pour tout $k \in \mathbb{N}^*$:

$$u_{2k} = u_k (u_k + 2 u_{k-1})$$
 et $u_{2k+1} = (u_{k+1})^2 + (u_k)^2$

 $D\'{e}monstration.$

Démonstration.

Démontrons par récurrence : $\forall k \in \mathbb{N}^*$, $\mathscr{P}(k)$ où $\mathscr{P}(k)$: $\begin{cases} u_{2k} = u_k (u_k + 2u_{k-1}) \\ u_{2k+1} = (u_{k+1})^2 + (u_k)^2 \end{cases}$

▶ Initialisation :

• Tout d'abord, d'après les calculs effectués en question précédente : $u_2 = 1$. De plus :

$$u_1(u_1 + 2u_0) = 1 \times (1 + 2 \times 0) = 1$$

Ainsi : $u_2 = u_1 (u_1 + 2 u_0)$.

• Ensuite, toujours d'après les calculs de la question précédente : $u_3 = 2$. De plus :

$$(u_2)^2 + (u_1)^2 = 1^2 + 1^2 = 2$$

Ainsi: $u_3 = (u_2)^2 + (u_1)^2$.

D'où : $\mathcal{P}(1)$.

▶ **Hérédité** : soit $k \in \mathbb{N}^*$.

Supposons $\mathscr{P}(k)$ et démontrons $\mathscr{P}(k+1)$ (i.e. $\begin{cases} u_{2(k+1)} = u_{k+1} (u_{k+1} + 2 u_k) \\ u_{2(k+1)+1} = (u_{k+2})^2 + (u_{k+1})^2 \end{cases}$)

• Tout d'abord :

$$u_{2(k+1)} = u_{2k+2}$$

$$= u_{2k+1} + u_{2k} (par d\'efinition de u_{2k+3})$$

$$= (u_{k+1})^2 + (u_k)^2 + u_k (u_k + 2 u_{k-1}) (par hypoth\`ese de r\'ecurrence)$$

$$= (u_{k+1})^2 + u_k (u_k + (u_k + 2 u_{k-1}))$$

$$= (u_{k+1})^2 + u_k (2 u_k + 2 u_{k-1})$$

$$= (u_{k+1})^2 + 2 u_k (u_k + u_{k-1})$$

$$= (u_{k+1})^2 + 2 u_k u_{k+1} (par d\'efinition de u_{k+1})$$

$$= u_{k+1} (u_{k+1} + 2 u_k)$$

• De plus :

$$u_{2(k+1)+1} = u_{2k+3}$$

 $= u_{2k+2} + u_{2k+1}$ (par définition de u_{2k+3})
 $= u_{k+1} (u_{k+1} + 2u_k) + (u_{k+1})^2 + (u_k)^2$ (par hypothèse de récurrence et d'après le point précédent)
 $= (u_{k+1})^2 + 2u_{k+1}u_k + (u_k)^2 + (u_{k+1})^2$
 $= (u_{k+1} + u_k)^2 + (u_{k+1})^2$ (par définition de u_{k+2})

D'où : $\mathcal{P}(k+1)$.

Par principe de récurrence :
$$\forall n \in \mathbb{N}^*$$
,
$$\begin{cases} u_{2k} = u_k (u_k + 2 u_{k-1}) \\ u_{2k+1} = (u_{k+1})^2 + (u_k)^2 \end{cases}$$
.

3. Démontrer : $\forall n \in \mathbb{N}, (u_{n+1})^2 - u_n u_{n+2} = (-1)^n$.

 $D\'{e}monstration.$

Démontrons par récurrence : $\forall n \in \mathbb{N}, \, \mathscr{P}(n)$ où $\mathscr{P}(n) : (u_{n+1})^2 - u_n \, u_{n+2} = (-1)^n$.

- ▶ Initialisation :
 - D'une part : $(u_1)^2 u_0 \times u_2 = 1^2 0 \times 1 = 1$.
 - D'autre part : $(-1)^0 = 1$.

Ainsi : $(u_1)^2 - u_0 u_2 = (-1)^0$. D'où : $\mathcal{P}(0)$.

▶ **Hérédité** : soit $n \in \mathbb{N}$.

Supposons $\mathscr{P}(n)$ et démontrons $\mathscr{P}(n+1)$ (i.e. $(u_{n+2})^2 - u_{n+1} u_{n+3} = (-1)^{n+1}$).

$$(u_{n+2})^2 - u_{n+1} u_{n+3} = (u_{n+1} + u_n)^2 - u_{n+1} (u_{n+2} + u_{n+1}) (par \ d\'efinition \ de \ u_{n+2} \ et \ u_{n+3})$$

$$= (u_{n+1})^2 + 2 u_n u_{n+1} + (u_n)^2 - u_{n+1} u_{n+2} - (u_{n+1})^2$$

$$= 2 u_n u_{n+1} + (u_n)^2 - u_{n+1} (u_{n+1} + u_n) (par \ d\'efinition \ de \ u_{n+2})$$

$$= 2 u_n u_{n+1} + (u_n)^2 - (u_{n+1})^2 - u_n u_{n+1}$$

$$= u_n (u_{n+1} - u_n) - (u_{n+1})^2$$

$$= u_n u_{n+2} - (u_{n+1})^2 (par \ d\'efinition \ de \ u_{n+2})$$

$$= -((u_{n+1})^2 - u_n u_{n+2})$$

$$= -(-1)^n (par \ hypoth\`ese \ de \ r\'ecurrence)$$

$$= (-1)^{n+1}$$

D'où : $\mathcal{P}(n+1)$.

Par principe de récurrence :
$$\forall n \in \mathbb{N}, (u_{n+1})^2 - u_n u_{n+2} = (-1)^n$$
.

4. Démontrer : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} u_{2k} = u_{2n+1} - 1.$

 $D\'{e}monstration.$

Démontrons par récurrence : $\forall n \in \mathbb{N}, \, \mathscr{P}(n)$ où $\mathscr{P}(n)$: $\sum_{k=0}^{n} u_{2k} = u_{2n+1} - 1$.

- ▶ Initialisation :
 - D'une part : $\sum_{k=0}^{0} u_{2k} = u_{2\times 0} = u_0 = 0.$
 - D'autre part : $u_{2\times 0+1} 1 = u_1 1 = 1 1 = 0$.

Ainsi: $\sum_{k=0}^{0} u_{2k} = u_{2\times 0+1} - 1$. D'où: $\mathscr{P}(0)$.

▶ **Hérédité** : soit $n \in \mathbb{N}$.

Supposons $\mathscr{P}(n)$ et démontrons $\mathscr{P}(n+1)$ (i.e. $\sum_{k=0}^{n+1} u_{2k} = u_{2(n+1)+1} - 1$). $\sum_{k=0}^{n+1} u_{2k} = \sum_{k=0}^{n} u_{2k} + u_{2(n+1)}$ $= u_{2n+1} - 1 + u_{2n+2} \quad (par \ hypothèse \ de \ récurrence)$

 $= u_{2n+3} - 1$

D'où : $\mathcal{P}(n+1)$.

Par principe de récurrence :
$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} u_{2k} = u_{2n+1} - 1.$$

(par définition de u_{2n+3})

5. Démontrer : $\forall n \in \mathbb{N}, \sum_{k=0}^{n-1} u_{2k+1} = u_{2n}$.

Démonstration.

Démontrons par récurrence : $\forall n \in \mathbb{N}, \mathscr{P}(n)$ où $\mathscr{P}(n) : \sum_{k=0}^{n-1} u_{2k+1} = u_{2n}$.

- ▶ Initialisation :
 - D'une part : $\sum_{k=0}^{0-1} u_{2k+1} = \sum_{k \in \emptyset} u_{2k+1} = 0$. D'autre part : $u_{2 \times 0} = u_0 = 0$.

Ainsi: $\sum_{k=0}^{0-1} u_{2k+1} = u_{2\times 0}$. D'où: $\mathscr{P}(0)$.

▶ **Hérédité** : soit $n \in \mathbb{N}$.

Supposons $\mathscr{P}(n)$ et démontrons $\mathscr{P}(n+1)$ (i.e. $\sum_{k=0}^{n} u_{2k+1} = u_{2(n+1)}$).

$$\sum_{k=0}^{n} u_{2k+1} = \sum_{k=0}^{n-1} u_{2k+1} + u_{2n+1}$$

$$= u_{2n} + u_{2n+1} \qquad (par \ hypoth\`ese \ de \ r\'ecurrence)$$

$$= u_{2n+2} \qquad (par \ d\'efinition \ de \ u_{2n+2})$$

D'où : $\mathcal{P}(n+1)$.

Par principe de récurrence :
$$\forall n \in \mathbb{N}, \sum_{k=0}^{n-1} u_{2k+1} = u_{2n}.$$

6. Démontrer : $\forall n \in \mathbb{N}, \sum_{k=1}^{n} u_k = u_{n+2} - 1$.

 $D\'{e}monstration.$

Démontrons par récurrence : $\forall n \in \mathbb{N}, \, \mathscr{P}(n)$ où $\mathscr{P}(n) : \sum_{k=1}^{n} u_k = u_{n+2} - 1$.

- ► Initialisation:
 - D'une part : $\sum_{k=1}^{0} u_k = \sum_{k \in \emptyset} u_k = 0$.
 - D'autre part : $u_{0+2} 1 = u_2 1 = 1 1 = 0$.

Ainsi : $\sum_{k=1}^{0} u_k = u_{0+2} - 1$. D'où : $\mathcal{P}(0)$.

▶ **Hérédité** : soit $n \in \mathbb{N}$.

Supposons $\mathscr{P}(n)$ et démontrons $\mathscr{P}(n+1)$ (i.e. $\sum_{k=1}^{n+1} u_k = u_{n+3} - 1$)

$$\sum_{k=1}^{n+1} u_k = \sum_{k=1}^{n} u_k + u_{n+1}$$

$$= u_{n+2} - 1 + u_{n+1} \quad (par \; hypoth\`ese \; de \; r\'ecurrence)$$

$$= u_{n+3} - 1 \quad (par \; d\'efinition \; de \; u_{n+3})$$

D'où : $\mathcal{P}(n+1)$.

Par principe de récurrence :
$$\forall n \in \mathbb{N}, \sum_{k=1}^{n} u_k = u_{n+2} - 1.$$

7. Démontrer :
$$\forall n \in \mathbb{N}, u_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k}$$
.

 $D\'{e}monstration.$

Démontrons par récurrence double : $\forall n \in \mathbb{N}, \ \mathscr{P}(n)$ où $\mathscr{P}(n) : u_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k}$.

- ▶ Initialisation :
 - Tout d'abord :

$$\sum_{k=0}^{0} \binom{0-k}{k} = \binom{0}{0} = 1 = u_1$$

D'où $\mathcal{P}(0)$.

• Ensuite:

$$\sum_{k=0}^{1} \binom{1-k}{k} = \binom{1}{0} + \binom{0}{1} = 1 = u_2$$

D'où $\mathcal{P}(1)$.

▶ Hérédité : soit $n \in \mathbb{N}$.

Supposons
$$\mathscr{P}(n)$$
 et $\mathscr{P}(n+1)$. Démontrons $\mathscr{P}(n+2)$ (i.e. $u_{n+3} = \sum_{k=0}^{n+2} \binom{n+2-k}{k}$).

$$u_{n+3} = u_{n+2} + u_{n+1}$$
 (par définition de u_{n+3})
$$= \sum_{k=0}^{n+1} \binom{n+1-k}{k} + \sum_{k=0}^{n} \binom{n-k}{k}$$
 (d'après $\mathscr{P}(n+1)$ et $\mathscr{P}(n)$)
$$= \left(\binom{n+1-0}{0} + \sum_{k=1}^{n+1} \binom{n+1-k}{k}\right) + \sum_{k=0}^{n} \binom{n-k}{k}$$
 (par décalage d'indice)
$$= 1 + \sum_{k=0}^{n} \binom{n-k}{k+1} + \binom{n-k}{k}$$
 (par triangle de Pascal)
$$= 1 + \sum_{k=0}^{n} \binom{n+1-k}{k+1}$$
 (par décalage d'indice)
$$= 1 + \sum_{k=0}^{n+1} \binom{n+2-k}{k}$$
 (par décalage d'indice)

Par ailleurs:

$$\sum_{k=0}^{n+2} \binom{n+2-k}{k} = \binom{n+2}{0} + \sum_{k=1}^{n+1} \binom{n+2-k}{k} + \binom{0}{n+2} = 1 + \sum_{k=1}^{n+1} \binom{n+2-k}{k} = u_{n+3}$$

D'où $\mathcal{P}(n+2)$.

Par principe de récurrence double :
$$\forall n \in \mathbb{N}, u_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k}$$
.

Soit $f: \mathbb{N} \to \mathbb{N}$ vérifiant : $\forall n \in \mathbb{N}, (f \circ f)(n) < f(n+1)$.

1. Démontrer : $\forall (k,n) \in \mathbb{N}^2$, $(k \ge n) \Rightarrow (f(k) \ge n)$.

 $D\'{e}monstration.$

Démontrons par récurrence : $\forall n \in \mathbb{N}, \mathcal{P}(n)$ où $\mathcal{P}(n) : \forall k \in \mathbb{N}, (k \ge n) \Rightarrow (f(k) \ge n)$.

▶ Initialisation : soit $k \in \mathbb{N}$.

Supposons : $k \ge 0$. Alors, comme f est à valeurs dans $\mathbb N$ d'après l'énoncé : $f(k) \in \mathbb N$.

En particulier : $f(k) \ge 0$.

D'où $\mathcal{P}(0)$.

▶ **Hérédité** : soit $n \in \mathbb{N}$.

Supposons $\mathscr{P}(n)$ et démontrons $\mathscr{P}(n+1)$ (i.e. $\forall k \in \mathbb{N}, (k \geqslant n+1) \Rightarrow (f(k) \geqslant n+1)$).

Soit $k \in \mathbb{N}$.

Supposons : $k \ge n + 1$.

• Par hypothèse sur la fonction f:

$$(f \circ f)(k-1) < f(k)$$

$$f(f(k-1))$$

• Comme $k \ge n+1$, alors : $k-1 \ge n$. Ainsi, par hypothèse de récurrence :

$$f(k-1) \geqslant n$$

On note : $k_0 = f(k-1)$. On vient de démontrer : $k_0 \ge n$.

Ainsi, toujours par hypothèse de récurrence : $f(k_0) \ge n$. Autrement dit :

$$f(f(k-1)) \geqslant n$$

• On en déduit, par transitivité :

$$f(k) > f(f(k-1)) \geqslant n$$

D'où : f(k) > n.

• Or f(k) et n sont des entiers. On en déduit :

$$f(k) \geqslant n+1$$

D'où $\mathcal{P}(n+1)$.

Par principe de récurrence :
$$\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, (k \ge n) \Rightarrow (f(k) \ge n).$$

2. En déduire, pour tout $n \in \mathbb{N} : f(n) \ge n$.

 $D\'{e}monstration.$

Soit $n \in \mathbb{N}$.

On remarque : $n \ge n$. On peut donc appliquer 1. à k = n. On obtient :

$$f(n) \geqslant n$$

$$\forall n \in \mathbb{N}, f(n) \geqslant n$$

3. Démontrer que la fonction f est strictement croissante.

 $D\'{e}monstration.$

- D'après l'énoncé, la fonction f prend ses valeurs dans \mathbb{N} . Démontrer que la fonction f est strictement croissante sur son ensemble de définition revient donc à démontrer que la suite (f(n)) est strictement croissante.
- Soit $n \in \mathbb{N}$. Démontrons : f(n+1) > f(n).
 - \times Par définition de f:

$$f(n+1) > (f \circ f)(n)$$

$$f(f(n))$$

 \times Or, d'après la question précédente appliquée à f(n) (ce qui est licite car $f(n) \in \mathbb{N}$):

$$f(f(n)) \geqslant f(n)$$

× Ainsi, par transitivité :

$$f(n+1) > f(f(n)) \geqslant f(n)$$

D'où :
$$f(n+1) > f(n)$$
.

On en déduit que la suite (f(n)) est strictement croissante.

La fonction f est donc strictement croissante sur son ensemble de définition.

4. En conclure : $\forall n \in \mathbb{N}, f(n) = n$.

 $D\'{e}monstration.$

Soit $n \in \mathbb{N}$.

On procède par double inégalité.

- D'après 2. : $f(n) \ge n$.
- Il reste à démontrer : $f(n) \leq n$.

On procède par l'absurde.

Supposons : f(n) > n.

Comme $f(n) \in \mathbb{N}$ et $n+1 \in \mathbb{N}$, on obtient : $f(n) \ge n+1$.

Par croissance de f sur son ensemble de définition (d'après 3.):

$$f(f(n)) \geqslant f(n+1)$$

De plus, par définition de f:

$$f(n+1) > f(f(n))$$

Ainsi, par transitivité:

$$f(n+1) > f(f(n)) \geqslant f(n+1)$$

Absurde! On en conclut : $f(n) \leq n$.

Finalement: $\forall n \in \mathbb{N}, f(n) = n$.