TP8 - Algorithmes d'apprentissage non supervisé

Les k moyennes

I. Introduction

Dans ce TP, on souhaite mettre en place l'algorithme de k moyennes qui est un algorithme d'apprentissage non supervisé. On rappelle qu'il consiste à faire en sorte qu'à partir d'un ensemble de données, la machine soit capable de créer ses propres catégories, et si possible, que ces catégories soient pertinentes pour nous. Ce modèle est plus proche de notre propre modèle d'apprentissage, basé sur l'observation.

On s'intéresse donc maintenant au problème suivant : comment comprendre la structure d'un jeu de données sans aider la machine en lui donnant un jeu d'apprentissage étiqueté?

En pratique, il s'agit pour la machine de regrouper les données proches au sein d'une même classe, à charge pour l'humain d'interpréter ensuite ce regroupement.

Par exemple, en regardant la Figure ??, les données semblent se regrouper en 4 classes. On souhaite donc que la machine en détecte 4 elle aussi. Pour cela, on impose à la machine le nombre k de classes. On appelle C_1, \ldots, C_k ces classes et on note, pour tout $j \in [1, k]$:

• μ_j le **barycentre** de C_j . Autrement dit : $\mu_j = \frac{1}{\operatorname{Card}(C_j)} \sum_{x \in C_j} x$;

• m_j le moment d'inertie de C_j . Autrement dit : $m_j = \sum_{x \in C_j} \|x - \mu_j\|^2$

Pour définir au mieux les k classes, on cherche donc à minimiser la somme des moments d'inertie :

$$I = \sum_{j=1}^{k} m_j$$

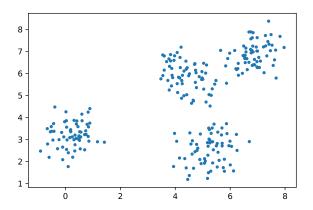


Fig. 1 Données

II. L'algorithme des k moyennes

Le calcul de la classification optimale, c'est-à-dire en minimisant la somme des moments d'inertie est un problème très coûteux en temps. On penche donc pour l'utilisation d'un algorithme glouton. Ce dernier assurera d'obtenir une « bonne » solution, mais pas forcément la meilleure.

L'algorithme des k moyennes consiste à :

- 1) choisir aléatoirement k points μ_1, \ldots, μ_k , qui contiendront, à terme, les centres des clusters (ou classes) construits;
- 2) associer chacun des points du nuage au centre μ_j le plus proche. On crée ainsi k clusters C_1, \ldots, C_k ;
- 3) calculer les barycentres μ_1, \ldots, μ_k de chacun des clusters C_1, \ldots, C_k qui remplacent les valeurs précédentes;
- 4) reprendre le calcul à partir de l'étape 2).

On admet, dans le programme de TPC, que cet algorithme converge. Autrement dit, on admet qu'à partir d'une certaine étape, les centres μ_1, \ldots, μ_k ne sont plus modifiés et donc que les classes C_1, \ldots, C_k sont stabilisées.

On rappelle, qu'en temps qu'algorithme glouton, l'algorithme des k moyennes renvoie une configuration pour laquelle la somme des moments d'inertie est un minimum local, mais pas forcément le minimum global.

III. Un exemple d'apprentissage non supervisé

III.1. Préambule

	Rácuparar	10	fichior	donnood	k-movennes	20.77	CHP Y	നെ	D2 00	
•	necuperer	ıе	псшег	donnees	k-movennes	· DV	sur i	па	page.	

Ce fichier contient deux ensembles de points, data1 et data2, qui serviront d'exemples dans ce TP. Ces ensembles de points sont stockés sous forme de listes de listes à deux éléments (abscisse et ordonnée du point).

Q	ue contier	nt donc dat :	a1[i] ? data1	l[i][0]? da	ta1[i][1]?		

- ▶ Le fichier donnees_k-moyennes.py contient aussi la définition d'une fonction affiche qui prend indifféremment pour argument une liste de points ou une liste de listes de points formant une partition de l'ensemble du jeu de données.
 - Si le paramètre d'entrée est une liste de points, alors la fonction affiche à l'écran tous les points en une même couleur.
 - Si le paramètre d'entrée est une liste de listes de points, alors chaque sous-liste formant la partition sera affichée avec une couleur différente.

Quelle commande permet d'afficher le nuage de points des données de data1?	

III.2. L'algorithme des k moyennes

	ction dist qui listance euclidi					
le points $\mu =$	etion plus $ ext{Procl} \ (\mu_1, \dots, \mu_k)$ st $k-1 bracket \ $ corresp	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense listes, et rer
le points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense: listes, et rer
le points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense listes, et rei
le points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense: listes, et rer
le points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense listes, et ren
le points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense: listes, et rer
de points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense: listes, et rer
de points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense: listes, et rei
de points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense listes, et ren
de points $\mu =$	(μ_1,\ldots,μ_k) st	tockée dans u	ne variable n	u sous forme	s forme de lis e de liste de	ste et un ense: listes, et ren

► Exécuter le script suivant.

```
1 L = [x**2 for x in range(1000)]
2 mu = sample(L, 7)
```

Que contiennent les variables L et mu?

En déduire ce que revoie la commande sample (data, k) où data est un jeu de données sous forme de liste de listes, et k est un entier.

▶ Écrire une fonction kmeans qui prend en paramètre un ensemble de points data sous forme de liste de listes, et un entier k, et qui renvoie la partition en k clusters du jeu de données à l'aide de l'algorithme des k moyennes.

Cette partition sera stockée sous la forme d'une liste de k listes de points (on rappelle que les points sont stockés sous la forme d'une liste à 2 éléments). Cela permettra de visualiser la classificaiton des points du jeu de données à l'aide de la fonction affiche.

Pour éviter d'obtenir des clusters vides lors de la $1^{\text{ère}}$ étape de l'algorithme des k moyennes (ce qui provoquerait une erreur lors d'une calcul du barycentre), on prendra pour valeurs initiales de μ_1 , ..., μ_k lors de l'étape 1), k points distincts parmi les données à traiter (ce qui garantit que chaque clister contient au minimum un point). On pourra utiliser la fonction sample étudiée précédemment.

On obtient par exemple les classifications suivantes, pour k = 4. On remarque que les partitions

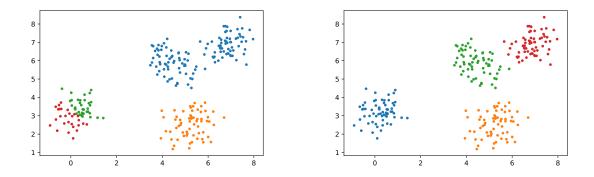


FIG. 2 Classification par algorithme des k moyennes

obtenus ne sont pas forcément optimaux. On va donc chercher à améliorer l'algorithme des k moyennes.

III.3. Une amélioration de l'algorithme

L'un des objectifs de l'algorithme des k moyennes est de minimiser l'**inertie** de la partition (C_1, \ldots, C_k) obtenue. On souhaite donc minimiser la quantité :

$$I = \sum_{j=1}^{k} \left(\sum_{p \in C_j} d(p, \mu_j) \right)$$

où μ_j désigne toujours le barycentre du cluster C_j .

▶ Écrire une fonction inertie qui prend en argument une liste de clusters clusters et qui renvoie l'inertie de cette partition.

	istes et un entier k, et q			de donnée data sou	ıs foi
petite inert	e).				
Tools	\mathbf{k} ix de l'entier k				
. Le circ	TX de l'ellulei k				
-	mandes permettent d'affidata pour $k=3$ et $k=1$	_	ı (on parle aussi d	e clustering) de l'e	nsen
de données		- 4 · 			
	s savoir quelle est la meil e silhouette d'un point.	leure partition pa	armi les 2 précéden	ates. Pour cela, on in	ntroc
la notion d Auparavan	——————————————————————————————————————	enne qui prend e	-		
la notion d Auparavan	e silhouette d'un point. , écrire une fonction moy	enne qui prend e	-		
la notion d Auparavan	e silhouette d'un point. , écrire une fonction moy	enne qui prend e	-		
la notion d Auparavan	e silhouette d'un point. , écrire une fonction moy	enne qui prend e	-		
la notion d Auparavan	e silhouette d'un point. , écrire une fonction moy	enne qui prend e	-		
la notion d	silhouette d'un point.	-	-		

- Pour définir la silhouette d'un point p appartenant au cluster C_i d'une partition (C_1, \ldots, C_k) , on introduit successivement les quantités suivantes :
 - \times le réel a(p) est la moyenne des distances entre p et les points q appartenant au même cluster que p:

$$a(p) = \frac{1}{\operatorname{Card}(C_i) - 1} \sum_{q \in C_i \setminus \{p\}} \operatorname{d}(p, q)$$

 \times le réel b(p) est la moyenne des distances entre p et les points q du cluster le plus proche :

$$b(p) = \min_{j \neq i} \left(\frac{1}{\operatorname{Card}(C_j)} \sum_{q \in C_j} d(p, q) \right)$$

 \times la silhouette de p est alors la quantité :

$$\operatorname{sil}(p) = \frac{b(p) - a(p)}{\max(a(p), b(p))}$$

Par construction, la silhouette de p est un réel compris entre 1 et -1. De plus :

- \times si sil(p) est proche de 1, alors a(p) est négligeable devant b(p). Or :
 - une petite valeur de a(p) illustre le fait que p est bien « intégré » dans son cluster,
 - une grande valeur de b(p) illustre le fait que p n'est pas bien intégré dans les autres clusters.

En résumé, une valeur de la silhouette proche de 1 démontre que le cluster associé à p est bien choisi.

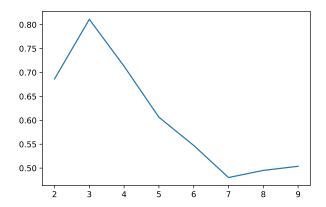
 \times si sil(p) est proche de -1, alors b(p) est négligeable devant a(p), et donc le cluster attribué à p est mal choisi.

Écrire maintenant successivement les fonctions a, b et sil qui prennent en paramètre un point p sous forme de liste, et une partition clusters sous forme de liste de listes, et qui renvoie la silhouette de p dans la partition clusters.

La silhouette d'une partition (C_1,\ldots,C_k) est la moyenne des moyennes des silhouettes des de chaque cluster. Autrement dit : $\operatorname{sil}(C) \ = \ \frac{1}{k} \sum_{i=1}^k \left(\frac{1}{\operatorname{Card}(C_i)} \sum_{p \in C_i} \operatorname{sil}(p) \right)$ Écrire une fonction silhouette qui prend en paramètre une partition clusters et qui cal silhouette d'une partition. $Quelle\ commande\ permet\ de\ comparer\ la\ partition\ du\ jeu\ de\ données\ data2\ obtenu\ avec rithme\ des\ k\ moyennes\ pour\ k=3,\ et\ pour\ k=4?$ Quelle est la meilleure partition?		
de chaque cluster. Autrement dit : $\operatorname{sil}(C) \ = \ \frac{1}{k} \sum_{i=1}^k \left(\frac{1}{\operatorname{Card}(C_i)} \sum_{p \in C_i} \operatorname{sil}(p) \right)$ Écrire une fonction silhouette qui prend en paramètre une partition clusters et qui cal silhouette d'une partition. $\operatorname{Quelle\ commande\ permet\ de\ comparer\ la\ partition\ du\ jeu\ de\ données\ data2\ obtenu\ avec rithme\ des\ k\ moyennes\ pour\ k=3,\ et\ pour\ k=4?}$		
Écrire une fonction silhouette qui prend en paramètre une partition clusters et qui cal silhouette d'une partition. Quelle commande permet de comparer la partition du jeu de données data2 obtenu avec rithme des k moyennes pour $k=3$, et pour $k=4$?		
Silhouette d'une partition. Quelle commande permet de comparer la partition du jeu de données data2 obtenu avec rithme des k moyennes pour $k=3$, et pour $k=4$?		$\operatorname{sil}(C) = \frac{1}{k} \sum_{i=1}^{k} \left(\frac{1}{\operatorname{Card}(C_i)} \sum_{p \in C_i} \operatorname{sil}(p) \right)$
Quelle commande permet de comparer la partition du jeu de données data2 obtenu avec rithme des k moyennes pour $k=3$, et pour $k=4$?		
ithme des k moyennes pour $k = 3$, et pour $k = 4$?		
ithme des k moyennes pour $k = 3$, et pour $k = 4$?		
ithme des k moyennes pour $k = 3$, et pour $k = 4$?		
ithme des k moyennes pour $k = 3$, et pour $k = 4$?		
	ithme des k moyer	nnes pour $k = 3$, et pour $k = 4$?
	ithme des k moyer	nnes pour $k = 3$, et pour $k = 4$?
	ithme des k moyer	nnes pour $k = 3$, et pour $k = 4$?
	ithme des k moyer	nnes pour $k = 3$, et pour $k = 4$?
	ithme des k moyer	nnes pour $k = 3$, et pour $k = 4$?

▶ Proposer un script permettant de déterminer quel est le nombre de clusters optimal pour le jeu de données data2.

On obtient la figure suivante.



 ${\bf Fig.~3}$ Valeurs des silhouettes des partitions de data2 en fonction de k

On constate que le nombre de 3 clusters est celui qui correspond au facteur de silhouette maximal. C'est donc le nombre qui fournit la meilleure partition (pour l'inertie).