Matrice d'une application linéaire

Exercice 1. Matrice d'un application linéaire

Dans chaque cas, déterminer la matrice de f dans la base canonique des espaces considérés puis préciser si f est bijective.

Exercice 2

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 5 & -8 & -4 \\ 8 & -15 & -8 \\ -10 & 20 & 11 \end{pmatrix}$. On pose u = (2, 4, -5), v = (1, 0, 1), w = (0, 1, -2).

- 1. Calculer f(u), f(v) et f(w).
- 2. Montrer que $\mathscr{B}' = (u, v, w)$ est une base de \mathbb{R}^3 puis déterminer la matrice A' de f dans la base \mathscr{B}' .
- 3. Calculer A'^2 et en déduire f^2

Exercice 3

On note $J_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $J_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $J_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $J_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ la base canonique de $\mathcal{M}_2(\mathbb{R})$.

Soit f l'application qui à toute matrice $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ associe $f(M) = M + (a+d)I_2$.

- 1. Montrer f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer la matrice A de f dans la base (J_1, J_2, J_3, J_4) .
- 3. a) Montrer que $(J_1 J_4, J_2, J_3, I_2)$ est une base de $\mathcal{M}_2(\mathbb{R})$.
 - b) Déterminer la matrice D de f dans cette base.
- 4. Montrer que f est un automorphisme de $\mathcal{M}_2(\mathbb{R})$.

Exercice 4

Soit $\mathscr{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et φ l'endomorphisme de \mathbb{R}^4 par $\left\{ \begin{array}{l} \varphi(e_i) = e_{i+1} \quad \text{si } 1 \leqslant i \leqslant 3 \\ \varphi(e_4) = e_1 \end{array} \right.$

- 1. Déterminer la matrice A de φ dans la base \mathscr{B} puis calculer A^4 .
- 2. En déduire que φ est un automorphisme et déterminer φ^{-1} .

Exercice 5

On considère la matrice $A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$ et l'endomorphisme f de \mathbb{R}^4 dont la

matrice dans la base canonique $\mathscr{B} = (e_1, e_2, e_3, e_4)$ de \mathbb{R}^4 est A.

- 1. Déterminer rg(f) puis en déduire Ker(f).
- 2. Calculer f^4 .
- 3. On note $\varepsilon_1 = e_1$, $\varepsilon_2 = f(\varepsilon_1)$, $\varepsilon_3 = f(\varepsilon_2)$, $\varepsilon_4 = f(\varepsilon_3)$ et $\mathcal{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$.
 - a) Montrer que \mathcal{C} est une base de \mathbb{R}^4 .
 - b) Déterminer la matrice N de f relativement à la base \mathcal{C} de \mathbb{R}^4 .
- 4. Existe-t-il un automorphisme g de l'espace vectoriel \mathbb{R}^4 tel que $g \circ f \circ g^{-1} = f^2$?

Exercice 6

- 1. Soit $n \in \mathbb{N}$. Montrer que $\varphi : P(X) \mapsto (1 X^2)P''(X) 3XP'(X)$ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Calculer $\varphi(1)$. L'endomorphisme φ est-il un automorphisme de $\mathbb{R}_n[X]$?
- 3. Dans cette question, on prend n=3.
 - a) Donner la matrice de φ dans la base canonique de $\mathbb{R}_3[X]$.
 - b) Déterminer une base de $\operatorname{Im}(\varphi)$ et une base de $\operatorname{Ker}(\varphi)$.

Exercice 7

On considère l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$ muni de sa base canonique $\mathscr{B} = (M_1, M_2, M_3, M_4)$ avec :

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ M_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ M_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Soit
$$f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$$
 et $g: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$
 $M \mapsto {}^t M$ et $M \mapsto M + {}^t M$

- 1. Montrer que $f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ et $g \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$.
- 2. Déterminer la matrice A de f relativement à la base \mathscr{B} .
- 3. En déduire sans calcul supplémentaire la matrice de g relativement à la base \mathscr{B} .
- 4. Les applications f et g sont-elles des automorphismes? Si oui, déterminer l'application réciproque.
- **5.** Si a et b sont deux automorphismes, est-ce que a+b est également un automorphisme?

Exercice 8

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & -2 & -1 \end{pmatrix}$. On considère les vecteurs u et v de \mathbb{R}^3 définis par u = (0, 1, -2) et v = (0, 1, -1).

- 1. Déterminer une base de Ker(f) et une base de Im(f).
- 2. Justifier de deux manières différentes que f n'est pas bijectif.
- 3. Montrer que (v) est une base de Ker(f-id)
- 4. Déterminer un vecteur w de \mathbb{R}^3 , dont la 3ème coordonnée (dans la base canonique de \mathbb{R}^3) est nulle, tel que la famille C=(u,v,w) soit une base de \mathbb{R}^3 et que la matrice de f dans la base C soit la matrice $T=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- **5.** Dans cette question, on suppose qu'il existe un endomorphisme g de \mathbb{R}^3 vérifiant $g \circ g = f$.
 - a) Montrer que $f \circ g = g \circ f$.
 - b) En déduire que f(g(u)) = 0 et f(g(v)) = g(v).
 - c) Justifier qu'il existe deux réels a et b tels que g(u) = au et g(v) = bv.
 - d) On note N la matrice de g dans la base C=(u,v,w) définie à la question 4. Justifier que $N=\begin{pmatrix} a & 0 & c \\ 0 & b & d \\ 0 & 0 & e \end{pmatrix}$, où a et b sont les deux réels définis à la question précédente, et c, d et e des réels.
- **6.** Existe-t-il des endomorphismes g de \mathbb{R}^3 tels $g \circ g = f$?

 Indication: Utiliser les matrices de f et g dans la base C = (u, v, w).

Exercice 9

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ de matrice $A = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ dans la base canonique de \mathbb{R}^3 .

- 1. Montrer que $f \circ f = 0$.
- 2. Sans calcul, déterminer si f est bijectif.
- 3. Montrer que Im(f) est inclus dans Ker(f).
- 4. En déduire les dimensions de ces 2 espaces vectoriels.
- 5. Déterminer des bases de Ker(f) et Im(f).
- 6. Soit $u \notin \text{Ker}(f)$ et $v \in \text{Ker}(f)$.
 - a) Montrer que la famille (u, f(u)) est libre dans \mathbb{R}^3 .
 - b) Montrer que la famille (u, f(u), v) est une base de \mathbb{R}^3 .
 - c) Déterminer la matrice de f dans la base (u, f(u), v)

Généralités sur les applications linéaires

Exercice 10

On considère l'espace vectoriel \mathbb{R}^3 muni de la base canonique \mathscr{B} .

On note P le plan d'équation x+y+z=0 et D la droite définie par le système d'équations $\left\{ \begin{array}{l} x=\frac{1}{2}\,z\\ y=\frac{3}{2}\,z \end{array} \right.$

1. Vérifier que $P \oplus D = \mathbb{R}^3$.

On note p la projection sur P parallèlement à D.

2. Soit u un vecteur de \mathbb{R}^3 . Calculer p(u) et déterminer la matrice de p dans \mathscr{B} .

Exercice 11

1. Soient F et G deux sous-espaces vectoriels de \mathbb{R}^n . Montrer :

$$\left(\exists u \in \mathscr{L}(\mathbb{R}^n), \ \operatorname{Im}(u) = F \text{ et } \operatorname{Ker}(u) = G\right) \Leftrightarrow \dim(F) + \dim(G) = n$$

2. Exemple.

Dans \mathbb{R}^3 , F est le plan d'équation x + y + z = 0 et G = Vect((1, -1, 0)).

- a) Déterminer un endomorphisme u dont l'image est F et le noyau est G.
- b) Exprimer la matrice de u dans la base canonique.

Projecteurs et symétries

Exercice 12

Soit E un \mathbb{K} -espace vectoriel.

Soient F et G deux sous-espaces supplémentaires de E $(E = F \oplus G)$.

Pour tout élément $x \in E$, on note $(x_F, x_G) \in F \times G$ l'unique couple de vecteurs tel que $x = x_F + x_G$. On appelle alors projection sur F parallèlement à G, l'application p définie par :

$$p : E \to E$$

$$x \mapsto x_E$$

On appelle symétrie par rapport à F parallèlement à G, l'application s:

- 1. a) Démontrer : $p \circ p = p$ (on dit que p est idempotente).
 - b) Démontrer : F = Im(p) et G = Ker(p).
 - c) On note $q = id_E p$. Démontrer que q est un projecteur.
 - d) Soit $f \in \mathcal{L}(E)$. Démontrer :

$$f\circ f=f \ \Leftrightarrow \ \left\{ \begin{array}{l} E=\operatorname{Im}(f)\oplus\operatorname{Ker}(f) \\ f \text{ est le projecteur sur }\operatorname{Im}(f) \text{ parallèlement à }\operatorname{Ker}(f) \end{array} \right.$$

- 2. a) Démontrer : $s \circ s = id_E$ (on dit que s est involutive).
 - b) Démontrer : $F = \text{Ker}(s \text{id}_E)$ et $G = \text{Ker}(s + \text{id}_E)$.
 - c) Démontrer : $s = 2p id_E = p q$.
 - d) Soit $g \in \mathcal{L}(E)$. Démontrer :

$$g \circ g = \mathrm{id}_E \quad \Leftrightarrow \quad \left\{ \begin{array}{l} E = \mathrm{Ker}(g - \mathrm{id}_E) \oplus \mathrm{Ker}(g + \mathrm{id}_E) \\ g \text{ est la symétrie par rapport à } \mathrm{Ker}(g - \mathrm{id}_E) \\ \mathrm{parallèlement à } \mathrm{Ker}(g + \mathrm{id}_E) \end{array} \right.$$

- 3. a) Démontrer : $Ker(p) = Im(id_E p)$
 - b) Démontrer : $\operatorname{Im}(p) = \operatorname{Ker}(\operatorname{id}_E p)$.
- 4. On note \mathscr{B}_F une base de F et \mathscr{B}_G une base de G. On note enfin \mathscr{B} la famille obtenue par concaténation des bases \mathscr{B}_F et \mathscr{B}_G .
 - a) Démontrer que \mathscr{B} est une base de E.
 - b) Déterminer $Mat_{\mathscr{B}}(p)$, $Mat_{\mathscr{B}}(q)$ et $Mat_{\mathscr{B}}(s)$.

Exercice 13

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

On considère p et q deux projecteurs de E.

- 1. Montrer: p+q est un projecteur de $E \Leftrightarrow p \circ q = q \circ p = 0_{\mathscr{L}(E)}$.
- 2. On suppose dans cette question que p+q est un projecteur de E. Montrer :

$$\operatorname{Ker}(p+q) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$$

$$\operatorname{Im}(p) \cap \operatorname{Im}(q) = \{0_E\}$$

$$\operatorname{Im}(p+q) = \operatorname{Im}(p) + \operatorname{Im}(q)$$

Matrices semblables - Changement de base

Exercice 14

Montrer que les matrices A et B ci-dessous sont semblables, et que les matrices C et D ne le sont pas, où :

$$A = \begin{pmatrix} 14 & 18 & 18 \\ -6 & -7 & -9 \\ -2 & -3 & -1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Exercice 15

On considère la matrice $A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{pmatrix}$.

Trouver les matrices $B \in \mathcal{M}_3(\mathbb{R})$ telles que $\operatorname{Im}(B) = \operatorname{Ker}(A)$, $\operatorname{Ker}(B) = \operatorname{Im}(A)$ et $\operatorname{tr}(B) = \operatorname{tr}(A)$.

Exercice 16

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$.

On suppose que ces deux matrices sont semblables dans $\mathcal{M}_n(\mathbb{C})$.

Montrer que A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 17

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Soient f et g deux endomorphismes de E tels que :

$$f^2 = g^2 = \mathrm{id}_E$$
 et $f \circ g + g \circ f = 0$

- 1. Montrer que la dimension de E est paire.
- 2. Montrer qu'il existe une base \mathcal{B} de E telle que :

$$M_{\mathscr{B}}(f) = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}$$
 et $M_{\mathscr{B}}(g) = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$

Exercice 18

Soit $A \in \mathscr{M}_n(\mathbb{R})$.

On suppose : rg(A) = tr(A) = 1.

Montrer : $A^2 = A$.

Sous-espaces stables

Exercice 19

Soit H un hyperplan d'un \mathbb{K} -espace vectoriel E de dimension finie. Soit $u \in \mathcal{L}(E)$.

- 1. Montrer: u stabilise $H \Leftrightarrow \exists \lambda \in \mathbb{K}$, $\operatorname{Im}(u \lambda \operatorname{id}_E) \subset H$.
- 2. On suppose dans cette question qu'il existe une base $\mathcal B$ telle que :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$

Trouver tous les sous-espaces stabilisés par u.

Exercice 20

On note $f \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associée à la matrice :

$$M = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -3 \\ -2 & 2 & -2 \end{pmatrix}$$

- 1. Montrer : $\mathbb{R}^3 = \operatorname{Ker}(f^2) \oplus \operatorname{Ker}(f 2\operatorname{id})$. Donner alors un élément de $\operatorname{Ker}(f^2) \setminus \operatorname{Ker}(f)$.
- 2. Montrer que M est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
- 3. Soit $g \in \mathcal{L}(\mathbb{R}^3)$. On suppose : $g^2 = f$.
 - a) Montrer que $Ker(f^2)$ est stable par g.
 - b) En déduire qu'un tel g n'existe pas.

Exercice 21

Notons $\mathscr{G} = \{ u \in \mathscr{L}(\mathscr{M}_n(\mathbb{R})) \mid \forall M \in \mathscr{M}_n(\mathbb{R}), u({}^tM) = {}^t(u(M)) \}.$

- 1. Montrer que \mathscr{G} est un espace vectoriel.
- 2. Montrer que les éléments de \mathscr{G} sont les éléments de $\mathscr{L}(\mathscr{M}_n(\mathbb{R}))$ qui stabilisent $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$. En déduire la dimension de \mathscr{G} .

Énoncés de concours

Exercice 22 (Centrale 2019 - M2)

Notations et rappels

- Dans tout le sujet, n désigne un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension n.
- Si $M \in \mathcal{M}_n(\mathbb{C})$, on note M^T la transposée de M.
- Si M est une matrice de $\mathcal{M}_n(\mathbb{C})$, on définit la suite des puissances de M par $M^0 = I_n$ et, pour tout entier naturel k, par la relation $M^{k+1} = M M^k$.

- De même, si u est un endomorphisme de E, on définit la suite des puissances de u par $u^0 = \mathrm{id}_E$ et, pour tout entier naturel k, par la relation $u^{k+1} = u \circ u^k$.
- Une matrice M est dite nilpotente s'il existe un entier naturel $k \ge 1$ tel que $M^k = 0$. Dans ce cas, le plus petit entier naturel $k \ge 1$ tel que $M^k = 0$ s'appelle l'indice de nilpotence de M.
- Soit $\mathcal B$ une base de E, un endomorphisme de E est nilpotent d'indice p si sa matrice dans $\mathcal B$ est nilpotente d'indice p.
- On pose $J_1 = (0)$ et, pour un entier $\alpha \ge 2$:

$$J_{\alpha} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{\alpha}(\mathbb{C})$$

• Si $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_m(\mathbb{C})$, on note diag(A, B), la matrice diagonale par blocs:

$$\operatorname{diag}(A, B) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \in \mathscr{M}_{n+m}(\mathbb{C})$$

• Plus généralement, si $A_1 \in \mathcal{M}_{n_1}(\mathbb{C}), A_2 \in \mathcal{M}_{n_2}(\mathbb{C}), \cdots, A_k \in \mathcal{M}_{n_k}(\mathbb{C}),$ on note :

$$\operatorname{diag}(A_1, A_2, \dots, A_k) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A_k \end{pmatrix} \in \mathcal{M}_{n_1 + n_2 + \dots + n_k}(\mathbb{C})$$

I. Premiers résultats

1. Que peut-on dire d'un endomorphisme nilpotent d'indice 1?

I.A - Réduction d'une matrice de $\mathscr{M}_2(\mathbb{C})$ nilpotente d'indice 2

On suppose que n=2.

Soit u un endomorphisme de E nilpotent d'indice $p \ge 2$.

- 2. Montrer qu'il existe un vecteur x de E tel que $u^{p-1}(x) \neq 0$.
- 3. Vérifier que la famille $\left(u^k(x)\right)_{0\leqslant k\leqslant p-1}$ est libre. En déduire que p=2.
- 4. Montrer que Ker(u) = Im(u).
- 5. Construire une base de E dans laquelle la matrice de u est égaleà J_2 .
- 6. En déduire que les matrices nilpotentes de $\mathcal{M}_2(\mathbb{C})$ sont exactement les matrices de trace et déterminant nuls.

I.B - Réduction d'une matrice de $\mathscr{M}_n(\mathbb{C})$ nilpotente d'indice 2

On suppose que $n \ge 3$. Soit u un endomorphisme de E nilpotent d'indice 2 et de rang r.

- 7. Montrer que $\operatorname{Im}(u) \subset \operatorname{Ker}(u)$ et que $2r \leq n$.
- 8. On suppose que $\operatorname{Im}(u) = \operatorname{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \dots, e_r de E tels que la famille $(e_1, u(e_1), e_2, u(e_2), \dots, e_r, u(e_r))$ est une base de E.
- 9. Donner la matrice de u dans cette base.
- 10. On suppose $\text{Im}(u) \neq \text{Ker}(u)$.

Montrer qu'il existe des vecteurs :

- $\times e_1, e_2, \ldots, e_r \text{ de } E,$
- \times et des vecteurs $v_1, v_2, \ldots, v_{n-2r}$ appartenantà $\operatorname{Ker}(u)$,

tels que $(e_1, u(e_1), e_2, u(e_2), \dots, e_r, u(e_r), v_1, v_2, \dots, v_{n-2r})$ est une base de E.

11. Quelle est la matrice de u dans cette base?

Exercice 23 (CCINP 2018)

réelles.

1. On note Δ l'endomorphisme de $\mathbb{R}[X]$ défini par :

$$\forall P \in \mathbb{R}[X], \ \Delta(P) = XP'$$

Calculer, pour tout $k \in [0, n], \Delta(X^k)$.

- 2. Montrer que pour tout $P \in \mathbb{R}[X], X^2P'' = \Delta \circ (\Delta \mathrm{id}_{\mathbb{R}[X]}).$
- 3. Montrer que si $P \in \mathbb{R}_n[X], \Delta(P) \in \mathbb{R}_n[X]$.

On notera Δ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par Δ .

- 4. Déterminer la matrice de Δ_n dans la base canonique $(1, X, \dots, X^n)$ de $\mathbb{R}_n[X]$
- 5. On définit l'application Φ par :

$$\forall P \in \mathbb{R}[X], \Phi(P) = X^2 P'' + aXP'$$

Montrer : $\Phi = \Delta^2 + (a-1)\Delta$ et en déduire que Φ définit un endomorphisme Φ_n de $\mathbb{R}_n[X]$

- 6. Montrer que Φ induit un endomorphisme Φ_n de $\mathbb{R}_n[X]$.
- 7. (Montrer que Φ_n est diagonalisable) [à traiter l'an prochain].

On considère l'endomorphisme φ de $\mathbb{R}[X]$ défini par :

$$\forall P \in \mathbb{R}[X], \ \varphi(P) = X^2 P'' + aXP' + bP$$

8. Montrer que φ induit un endomorphisme de $\mathbb{R}_n[X]$, endomorphisme que l'on

Exprimer φ_n en fonction de Δ_n .

9. Exprimer la matrice de φ_n dans la base canonique de $\mathbb{R}_n[X]$

On considère l'équation :

$$s^2 + (a-1)s + b = 0$$

- 10. Expliciter le noyau de φ_n lorsque l'équation (1) admet deux racines entières m_1 , $m_2 \in [0, n].$
- Dans la suite, n désigne un entier naturel non nul et a et b sont des constantes 11. Expliciter le noyau de φ_n lorsque l'équation (1) admet une unique racine entière $m \in [0, n]$
 - 12. Déterminer le noyau de φ . En déduire qu'il est de dimension finie et déterminer sa dimension.