Exercice 1

- L'espace \mathbb{R}^4 est muni de sa structure euclidienne usuelle.
- On pose $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x y + z = y z + t = 0\}.$
- 1. Déterminer la dimension et une base orthonormale de F. F^{\perp} .
- 2. Déterminer les matrices, dans la base canonique de \mathbb{R}^4 , de la projection orthogonale sur F et de la symétrie orthogonale par rapport à F.

Exercice 2

Soient
$$E = \left\{ \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, (a,b) \in \mathbb{R}^2 \right\}$$
 et $M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 2. On munit $\mathcal{M}_2(\mathbb{R})$ de son produit scalaire canonique. Déterminer la distance de M à E.

Exercice 3

- Soit $E = \mathcal{M}_n(\mathbb{R})$, muni de son produit scalaire canonique.
- 1. Montrer que les sous-espaces $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux dans E, et exprimer la distance d'une matrice M à $\mathscr{S}_n(\mathbb{R})$ en fonction de M et tM .
- 2. Soit H l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont la somme des coefficients est nulle. Calculer la distance d'une matrice M à H.

Exercice 4

Dans \mathbb{R}^3 muni de son produit scalaire canonique, déterminer la matrice dans la base canonique de la projection orthogonale sur le plan P d'équation x - 2y + z = 0.

Exercice 5

Pour P et Q dans $\mathbb{R}[X]$, on pose $(P|Q) = \int_0^{+\infty} P(t) Q(t) e^{-t} dt$.

- 1. Montrer que l'on définit ainsi un produit scalaire sur $\mathbb{R}[X]$.
- 2. Déterminer $\min_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} (t^2 at b)^2 e^{-t} dt$.

Exercice 6

Sur $\mathbb{R}_n[X]$ on définit l'application $(P,Q) \mapsto \langle P,Q \rangle = \sum_{k=0}^n P^{(k)}(1) \ Q^{(k)}(1)$.

- 1. Montrer que c'est un produit scalaire.
- 2. Montrer que l'ensemble $E = \{P \in \mathbb{R}_n[X] \mid P(1) = 0\}$ est un sous-espace vectoriel de $\mathbb{R}_n[X]$ et donner sa dimension. Calculer d(1, E).

Exercice 7

Soit $E = C^2([0,1], \mathbb{R})$.

1. Montrer que la formule :

$$\langle f|g\rangle = \int_0^1 (fg + f'g')$$

définit un produit scalaire sur E.

- 2. On considère les sous-espaces $V = \{ f \in E \mid f'' = f \}$ et $W = \{ f \in E \mid f(0) = f(1) = 0 \}$ de E.
 - a) Soient $f \in V$ et $g \in E$. Montrer que $\langle f|g \rangle = f'(1) g(1) f'(0) g(0)$. En déduire que V et W sont supplémentaires orthogonaux relativement à $\langle \cdot | \cdot \rangle$.
 - b) Montrer que les fonctions exp et $\frac{1}{\exp}$ forment une base orthogonale de V. En déduire une expression explicite de la projection orthogonale sur V.

Exercice 8

Soit $(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$.

- 1. Donner une condition nécessaire et suffisante sur (a_0, a_1, \ldots, a_n) pour que la formule : $\langle P|Q\rangle = \sum_{k=0}^n P(a_k) \ Q(a_k)$ définisse un produit scalaire sur $\mathbb{R}_n[X]$. On suppose cette condition vérifiée dans la suite.
- 2. Soit $F = \{ P \in \mathbb{R}_n[X] \mid \sum_{k=0}^n P(a_k) = 0 \}.$

Déterminer F^{\perp} et calculer la distance de X^n à F.

Exercice 9

Soient u et v deux vecteurs distincts d'un espace euclidien E.

- 1. Montrer que s'il existe une symétrie orthogonale s échangeant u et v, alors ||u|| = ||v||.
- 2. Montrer la réciproque, et expliciter une telle symétrie orthogonale s en fonction de u et v.

Généralités

Exercice 10

Soient E un espace préhilbertien réel, $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$, et $x\in E$.

- 1. Montrer que si $\lim_{n\to+\infty} ||x_n-x||=0$, alors : $\forall y\in E, \lim_{n\to+\infty} \langle x_n-x|y\rangle=0$.
- 2. Montrer que la réciproque est vraie si E est de dimension finie, mais fausse en général.

Exercice 11

- On munit \mathbb{R}^n de sa structure euclidienne canonique.
- On considère $a = (a_1, \dots, a_n) \in \mathbb{R}^n$ tel que ||a|| = 1 et on pose $A = (a_i a_j)_{1 \le i,j \le n} \in \mathscr{M}_n(\mathbb{R})$.
- 1. Montrer que l'endomorphisme canoniquement associé à A est un projecteur orthogonal.
- 2. Étudier l'endomorphisme canoniquement associé à la matrice $2A I_n$.

Exercice 12

Soient E un espace euclidien et u un endomorphisme de E tel que :

$$\forall x \in E, \langle u(x), x \rangle = 0$$

- 1. Montrer que pour tout couple $(x,y) \in E^2$, $\langle u(x), y \rangle = -\langle x, u(y) \rangle$.
- 2. Montrer que Im(u) et Ker(u) sont supplémentaires orthogonaux dans E, et que la matrice de u dans toute base orthonormale de E est antisymétrique.

Exercice 13

On considère une famille de vecteurs (e_1, \ldots, e_p) de l'espace euclidien \mathbb{R}^n telle que :

$$\forall (i,j) \in [1,p], i \neq j \Rightarrow \langle e_i | e_j \rangle < 0$$

Une telle famille est dite strictement obtusangle.

- 1. Trouver une telle famille lorsque n=2 et p=3.
- 2. Soit $(x_1, ..., x_n) \in \mathbb{R}^p$. On pose $x = \sum_{k=1}^p x_k \cdot e_k$ et $y = \sum_{k=1}^p |x_k| \cdot e_k$. Montrer : $||x|| \ge ||y||$.
- 3. Montrer que si x = 0, alors soit tous les x_k sont nuls, soit tous les x_k sont non nuls.
- 4. Montrer: $p \leq n+1$.

Exercice 14

- \bullet Soit E un espace euclidien
- Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormale de E.
- Pour tout $f \in (E)$, on pose $\alpha(f) = \operatorname{tr}({}^t MM)$, où $M = \operatorname{Mat}_{\mathscr{B}}(f)$.
- 1. Montrer que $\alpha(f)$ ne dépend pas de la base orthonormale choisie.
- 2. Soit p un projecteur de E. Montrer que $\alpha(p) \ge \operatorname{rg}(p)$ et étudier le cas d'égalité.

Exercice 15

On considère l'application φ définie par :

$$\varphi : \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$$

$$(P , Q) \mapsto \int_{-\infty}^{+\infty} P(x) Q(x) e^{-x^2} dx$$

- 1. Montrer que φ définit un produit scalaire sur $\mathbb{R}[X]$.
- 2. On pose, pour tout $x \in \mathbb{R}$, $f(x) = e^{-x^2}$.
 - a. Montrer que pour tout $n \in \mathbb{N}$, il existe $H_n \in \mathbb{R}[X]$ tel que :

$$\forall x \in \mathbb{R}, f^{(n)}(x) = H_n(x) e^{-x^2}$$

- **b.** Montrer que H_n est de degré n, et est orthogonal à $\mathbb{R}_{n-1}[X]$ si $n \ge 1$.
- c. Montrer que pour tout $n \in \mathbb{N}^*$, H_n est scindé à racines simples sur \mathbb{R} .

Exercice 16

• Soient E un espace euclidien et p un projecteur de E.

 $\text{Montrer}: \begin{array}{c} p \text{ est un projecteur} \\ \text{orthogonal} \end{array} \Leftrightarrow \forall x \in E, \ \|p(x)\| \leqslant \|x\| \ .$

Exercice 17

- Soit E un espace euclidien.
- Pour une famille $(u_1, \ldots, u_p) \in E^p$, on note $G(u_1, \ldots, u_p) = (\langle u_i \mid u_j \rangle)_{1 \leq i, j \leq p}$ la matrice de Gram de la famille (u_1, \ldots, u_p) .
- 1. Soit M la matrice des coordonnées de la famille (u_1, \ldots, u_p) dans une base orthonormale de E. Montrer que $G(u_1, \ldots, u_p) = {}^t MM$.
- 2. Montrer que $rg(u_1, ..., u_p) = rg(G(u_1, ..., u_p))$.
- 3. Montrer que $\det(G(u_1,\ldots,u_p))$ n'est pas modifié si l'on ajoute à l'un des vecteurs de la famille (u_1,\ldots,u_p) une combinaison linéaire des autres vecteurs de cette famille.
- 4. Soient $x \in E$ et $F = \text{Vect}(u_1, \dots, u_p)$. Montrer que $\det (G(x, u_1, \dots, u_p)) = \det(x, F)^2 \times \det (G(u_1, \dots, u_p))$

Écrits de concours

Exercice 18 (d'après EML S 2020)

- Dans tout le problème, n désigne un entier naturel supérieur ou égal à 1.
- On note $\mathscr{B}_n = (1, X, \dots, X^n)$ la base canonique de $\mathbb{R}_n[X]$.

PARTIE A : Étude d'un produit scalaire

- 1. Montrer que, pour tout polynôme P de $\mathbb{R}[X]$, l'intégrale $\int_0^{+\infty} P(t) e^{-t} dt$ converge.
- 2. Pour tout k de \mathbb{N} , on pose $I_k = \int_0^{+\infty} t^k e^{-t} dt$.
 - a) Pour tout k de \mathbb{N} , déterminer à l'aide d'une intégration par parties une relation entre les intégrales I_{k+1} et I_k .
 - b) En déduire : $\forall k \in \mathbb{N}, I_k = k!$.

Pour tout couple (P,Q) de $\mathbb{R}[X]^2$, on pose : $\langle P,Q\rangle = \int_0^{+\infty} P(t) Q(t) e^{-t} dt$.

3. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.

Dans toute la suite du problème, on munit $\mathbb{R}[X]$ de ce produit scalaire et on note $\|\cdot\|$ la norme associée.

4. Calculer, pour tout (i,j) de \mathbb{N}^2 , $\langle X^i, X^j \rangle$ et, pour tout i de \mathbb{N} , $\|X^i\|$.

On admet qu'il existe une unique suite de polynômes $(Q_k)_{k\in\mathbb{N}}$ définie par :

- \times pour tout k de $\mathbb{N},$ le polynôme Q_k est de degré k et de coefficient dominant strictement positif,
- × pour tout k de \mathbb{N} , la famille (Q_0, \ldots, Q_k) est une famille orthonormale.
- 5. a) Déterminer Q_0 et Q_1 et vérifier que $Q_2(X) = \frac{1}{2} X^2 2X + 1$.
 - **b)** Montrer que, pour tout k de \mathbb{N} , la famille $\mathcal{C}_k = (Q_0, \dots, Q_k)$ est une base de $\mathbb{R}_k[X]$.

On définit la matrice $H_n = (h_{i,j})_{1 \leq i,j \leq n+1}$ de $\mathscr{M}_{n+1}(\mathbb{R})$ par :

$$\forall (i,j) \in [1, n+1]^2, \ h_{i,j} = \langle X^{i-1}, X^{j-1} \rangle$$

On note également A_n la matrice de la famille $\mathscr{B}_n = (1, X, \dots, X^n)$ dans la base \mathcal{C}_n .

6. Étude du cas n=2

a) Expliciter la matrice H_2 .

Montrer que H_2 est inversible et vérifier : $H_2^{-1} = \begin{pmatrix} 3 & -3 & \frac{1}{2} \\ -3 & 5 & -1 \\ \frac{1}{2} & -1 & \frac{1}{4} \end{pmatrix}$.

- b) Expliciter la matrice A_2 et calculer tA_2A_2 . Que remarque-t-on?
- 7. On note, pour tout (i,j) de $[1, n+1]^2$, $a_{i,j}$ le coefficient d'indice (i,j) de la matrice A_n .
 - a) Justifier que la matrice A_n est inversible.
 - b) Justifier: $\forall j \in [1, n+1], X^{j-1} = \sum_{k=1}^{n+1} a_{k,j} Q_{k-1}.$ En déduire: $\forall (i,j) \in [1, n+1]^2, \langle X^{i-1}, X^{j-1} \rangle = \sum_{k=1}^{n+1} a_{k,i} a_{k,j}.$
 - c) Montrer alors la relation : $H_n = {}^tA_nA_n$.
- 8. a) Montrer que la matrice H_n est inversible.
 - b) Établir (sans calcul) que la matrice H_n est diagonalisable.
 - c) Montrer que les valeurs propres de H_n sont strictement positives. (On pourra calculer, pour tout vecteur propre Y de H_n , tYH_nY .)

PARTIE B: Étude d'une projection

Soit P un polynôme de $\mathbb{R}[X]$.

On définit la matrice colonne $U = \begin{pmatrix} \langle P, 1 \rangle \\ \langle P, X \rangle \\ \vdots \\ \langle P, X^n \rangle \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbb{R}).$

9. Soit R un polynôme de $\mathbb{R}_n[X]$.

On note $V = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ la matrice des coordonnées de R dans la base \mathcal{B}_n .

a) Montrer, pour tout i de [0, n]: $\langle R, X^i \rangle = \sum_{k=0}^n \alpha_k \langle X^i, X^k \rangle$.

b) Montrer:

R est le projeté orthogonal $\Leftrightarrow \forall i \in [0, n], \langle P, X^i \rangle = \langle R, X^i \rangle$

En déduire : R est le projeté orthogonal $\Leftrightarrow V = H_n^{-1} U$.

10. Retour au cas n=2

Déterminer le projeté orthogonal du polynôme X^3 sur $\mathbb{R}_2[X]$

11. On souhaite retrouver le résultat précédent par une méthode différente. On définir la fonction f sur \mathbb{R}^3 par :

$$\forall (a,b,c) \in \mathbb{R}^3, \ f(a,b,c) = \int_0^{+\infty} (a+bt+ct^2-t^3)^2 e^{-t} \ dt$$

a) Vérifier que pour tout $(a,b,c) \in \mathbb{R}^3$:

$$f(a,b,c) = a^2 + 2b^2 + 24c^2 + 2ab + 4ac + 12bc - 12a - 48b - 240c + 720$$

b) Montrer que f admet un unique point critique (a_0, b_0, c_0) vérifiant :

$$H_2 \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} = \begin{pmatrix} 6 \\ 24 \\ 120 \end{pmatrix}$$

- c) Montrer que la matrice hessienne de f au point (a_0, b_0, c_0) est la matrice $2 H_2$.
- d) En déduire que la fonction f admet au point (a_0, b_0, c_0) un minimum local.
- e) Justifier : $\inf_{(a,b,c)\in\mathbb{R}^3} f(a,b,c) = \inf_{R\in\mathbb{R}_2[X]} ||X^3 R||^2$.

En déduire que f admet un minimum global sur \mathbb{R}^3 et que ce minimum est atteint en un unique point.

f) Retrouver alors l'expression du projeté orthogonal du polynôme X^3 sur $\mathbb{R}_2[X]$.

Exercice 19 (d'après EML S 2019)

- On note E l'espace vectoriel des fonctions définies et continues sur \mathbb{R}_+ et à valeurs dans \mathbb{R} et E_2 l'ensemble des fonctions f de E telles que l'intégrale $\int_0^{+\infty} (f(x))^2 dx$ converge.
- Pour toute fonction f de E, on note toujours $\Phi(f)$ la fonction définie dans cette partie sur \mathbb{R}_+ par :

$$\forall x \in \mathbb{R}_+, \ \Phi(f)(x) = \begin{cases} \frac{1}{x^2} \int_0^x tf(t) \ dt & \text{si } x > 0 \\ f(0) & \text{si } x = 0 \end{cases}$$

- 1. a) Justifier: $\forall (x,y) \in \mathbb{R}^2, |xy| \leq \frac{1}{2} (x^2 + y^2).$
 - b) En déduire que, pour tout couple de fonctions $(f,g) \in E_2 \times E_2$, l'intégrale \int_0^{∞} est absolument convergente.
- 2. Montrer alors que E_2 est un sous-espace vectoriel de E.

On considère l'application $\langle \cdot, \cdot \rangle$ de $E_2 \times E_2$ dans $\mathbb R$ définie par :

$$\forall (f,g) \in E_2 \times E_2, \ \langle f,g \rangle = \int_0^{+\infty} f(x) g(x) \ dx$$

3. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire de E_2 .

On munit E_2 de ce produit scalaire et de la norme associée $\|\cdot\|$.

4. Soit f une fonction de E_2 .

On note, pour tout x de $\mathbb{R}_+: h(x) = \int_0^x tf(t) dt$.

- a) Calculer les limites de $x \mapsto \frac{(h(x))^2}{x^4}$ et de $x \mapsto \frac{(h(x))^2}{x^3}$ en 0.
- b) Montrer, à l'aide d'une intégration par parties :

$$\forall X > 0, \int_0^x \frac{\left(h(x)\right)^2}{x^4} dx = -\frac{1}{3} \frac{\left(h(X)\right)^2}{X^3} + \frac{2}{3} \int_0^x f(x) \Phi(f)(x) dx$$

c) Soit X > 0. En étudiant le signe de la fonction polynomiale

$$\lambda \mapsto \int_0^x \left(\lambda f(x) + \Phi(f)(x)\right)^2 dx$$

montrer l'inégalité de Cauchy-Schwarz suivante :

$$\int_0^x f(x) \Phi(f)(x) \ dx \ \leqslant \ \left(\int_0^x \ \left(f(x) \right)^2 \ dx \right)^{1/2} \left(\int_0^x \ \left(\Phi(f)(x) \right)^2 \ dx \right)^{1/2}$$

- **d)** En déduire : $\forall X > 0$, $\left(\int_0^x (\Phi(f)(x))^2 dx \right)^{1/2} \leqslant \frac{2}{3} \left(\int_0^x (f(x))^2 dx \right)^{1/2}$.
- e) Montrer alors que la fonction $\Phi(f)$ appartient à E_2 et que l'on a :

$$\|\Phi(f)\| \leqslant \frac{2}{3} \|f\|$$

- f(x) dx dx utilisant la relation de la question **4.b**, justifier que la limite de $X \mapsto X(\Phi(f)(X))^2$ en $+\infty$ est finie, puis en raisonnant par l'absurde, montrer que cette limite est nulle.
 - g) En déduire : $\|\Phi(f)\|^2 = \frac{2}{3} \langle \Phi(f), f \rangle$.

Exercice 20 (d'après EDHEC S 2019)

- \bullet Dans tout l'exercice, n désigne un entier naturel non nul.
- On se place dans un espace euclidien E de dimension n. On note $\mathscr{B} = (e_1, e_2, \dots, e_n)$ une base orthonormale de E
- Le produit scalaire des vecteurs x et y de E est noté $\langle x,y \rangle$ et la norme de x est notée ||x||.

Partie 1 : définition de l'adjoint u^* d'un endomorphisme u de E

Dans toute cette partie, u désigne un endomorphisme de E.

On se propose de montrer qu'il existe un unique endomorphisme de E, noté u^* , qui à tout vecteur y de E associe le vecteur $u^*(y)$ vérifiant :

$$\forall x \in E, \langle u(x), y \rangle = \langle x, u^{\star}(y) \rangle$$

1. a) Montrer que si u^* existe, alors on a, pour tout y de E:

$$u^{\star}(y) = \sum_{i=1}^{n} \langle u(e_i), y \rangle e_i$$

- b) En déduire que si u^* existe, alors u^* est unique.
- 2. a) Vérifier que l'application u^* définie par l'égalité établie à la question 1.a) est effectivement un endomorphisme de E.
 - b) Conclure que cette application est solution du problème posé, c'est-à-dire que c'est l'unique endomorphisme de E, appelé adjoint de u, vérifiant :

$$\forall (x,y) \in E^2, \ \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

Partie 2 : étude des endomorphismes normaux

On dit que u est un endomorphisme normale quand on a l'égalité :

$$u \circ u^{\star} = u^{\star} \circ u$$

3. Soit f un endomorphisme symétrique de E. Donner son adjoint et vérifier que f est normal.

Dans la suite, u désigne un endomorphisme normal.

- **4.** a) Montrer que : $\forall x \in E, ||u(x)|| = ||u^*(x)||$.
 - b) En déduire que $Ker(u) = Ker(u^*)$.
- 5. Montrer que si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est stable par u^{\star} .
- 6. On suppose que u possède une valeur propre λ et on note E_{λ} le sous espace propre associé.
 - a) Montrer que E_{λ} est stable par u^{\star} .
 - b) Établir que $(u^*)^* = u$ puis en déduire que E_{λ}^{\perp} est stable par u.

Exercice 21 (d'après EDHEC S 2018)

- \bullet On désigne par n et p deux entiers naturels supérieurs ou égaux à 1.
- On se place dans l'espace euclidien \mathbb{R}^p .
- Le produit scalaire canonique des vecteurs x et y de \mathbb{R}^p est noté $\langle x, y \rangle$ et la norme du vecteur x est notée ||x||.
- 1. Dans cette question, on considère n vecteurs u_1, u_2, \ldots, u_n de \mathbb{R}^p , tous de norme égale à 1.
 - À tout $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, on associe le vecteur $w_x = \sum_{k=1}^n x_k \cdot u_k$.
 - On se propose de montrer qu'il existe des n-uplets $x = (x_1, x_2, \ldots, x_n)$, dont les coordonnées sont éléments de $\{-1, 1\}$, pour lesquels $||w_x|| \leq \sqrt{n}$ et d'autres pour lesquels $||w_x|| \geq \sqrt{n}$.
 - À cet effet, on considère n variables aléatoires réelles $X_1, X_2, ..., X_n$, toutes définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$, indépendantes, et telles que pour tout k de [1, n], on ait :

$$\mathbb{P}(\{X_k = 1\}) = \mathbb{P}(\{X_k = -1\}) = \frac{1}{2}$$

 \bullet On considère l'application X suivante :

$$X: \Omega \to \mathbb{R}$$

$$\omega \mapsto \left\| \sum_{k=1}^{n} X_k(\omega) \cdot u_k \right\|^2$$

- On admet que X est une variable aléatoire réelle définie, elle aussi, sur $(\Omega, \mathscr{A}, \mathbb{P})$.
- a) Calculer, pour tout couple (i, j) de $[1, n]^2$, la valeur de $\mathbb{E}(X_i X_j)$.
- b) En déduire l'existence et la valeur de $\mathbb{E}(X)$.
- c) Conclure quant à l'objectif de cette question.

2. • Dans cette question, on considère n réels p_1, p_2, \ldots, p_n , tous éléments de [0, 1[, ainsi que n vecteurs v_1, v_2, \ldots, v_n de \mathbb{R}^p vérifiant :

$$\forall k \in [1, n], \ \|v_k\| \leqslant 1$$

• On pose $z = \sum_{k=1}^{n} p_k \cdot v_k$ et on se propose de montrer qu'il existe un n-uplet $x = (x_1, x_2, \dots, x_n)$ dont les coordonnées sont dans $\{0, 1\}$, tel que, en notant $y_x = \sum_{k=1}^{n} x_k \cdot v_k$, on ait :

$$||z - y_x|| \leqslant \frac{\sqrt{n}}{2}$$

- À cet effet, on considère n variables aléatoires Y_1, Y_2, \ldots, Y_n , définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes, et telles que, pour tout k de $[\![1,n]\!]$, Y_k suit la loi de Bernoulli $\mathcal{B}(p_k)$.
- \bullet On considère l'application Y suivante :

$$Y: \Omega \to \mathbb{R}$$

$$\omega \mapsto \left\| \sum_{k=1}^{n} (p_k - Y_k(\omega)) \cdot v_k \right\|^2$$

- On admet que Y est une variable aléatoire définie sur $(\Omega, \mathscr{A}, \mathbb{P})$.
- a) Calculer, pour tout (i, j) de $[1, n]^2$, la valeur de $\mathbb{E}((p_i Y_i)(p_j Y_j))$.
- b) Justifier que Y possède une espérance et montrer :

$$\mathbb{E}(Y) \leqslant \frac{n}{4}$$

c) Conclure quant à l'objectif de cette question.

Exercice 22 (d'après EDHEC S 2021)

- On considère un espace euclidien E pour lequel le produit scalaire de deux vecteurs x et y est noté $\langle x,y\rangle$, tandis que la norme du vecteur x est notée ||x||. Le vecteur nul de E est noté 0_E .
- On considère aussi un endomorphisme f de E, différent de l'endomorphisme nul, et antisymétrique, c'est-à-dire qu'il vérifie :

$$\forall (x,y) \in E^2, \langle f(x), y \rangle = -\langle x, f(y) \rangle$$

- 1. Montrer que : $\forall x \in E, \langle f(x), x \rangle = 0$.
- 2. Établir l'égalité : $Ker(f) \oplus Im(f) = E$
- 3. On pose $s = f \circ f$. Montrer que s est un endomorphisme symétrique de E et que ses valeurs propres sont toutes dans \mathbb{R}_{-} .
- 4. On note g l'application qui à tout vecteur x de Im(f) associe g(x)=f(x) et on pose $t=g\circ g$.
 - a) Montrer que g est un endomorphisme antisymétrique de Im(f).
 - b) En déduire que les valeurs propres de t sont toutes dans \mathbb{R}_{-}^{*} .

Dans les deux questions suivantes, on considère une valeur propre λ de t et on note $E_{\lambda}(t)$ le sous-espace propre de t associé à cette valeur propre.

- 5. On considère un vecteur e_1 non nul de $E_{\lambda}(t)$.
 - a) Montrer que $(e_1, g(e_1))$ est une famille d'éléments de $E_{\lambda}(t)$, orthogonale et libre.
 - b) En déduire, en considérant l'orthogonal F_2 de Vect $(e_1, g(e_1))$ dans $E_{\lambda}(t)$, que la dimension de $E_{\lambda}(t)$ est paire et qu'il existe un entier naturel p non nul, ainsi que p vecteurs e_1, e_2, \ldots, e_p de $E_{\lambda}(t)$, tels que $(e_1, g(e_1), e_2, g(e_2), \ldots, e_p, g(e_n))$ soit une base orthogonale de $E_{\lambda}(t)$.
- 6. Soit k un entier de [1, p].
 - a) Montrer que l'on a : $||g(e_k)||^2 = -\lambda ||e_k||^2$.

- b) On considère les vecteurs $e_k' = \frac{1}{\|e_k\|} e_k$ et $e_k'' = \frac{1}{\|g(e_k)\|} g(e_k)$. Établir : $g(e_k') = \sqrt{-\lambda} e_k''$ et $g(e_k'') = -\sqrt{-\lambda} e_k'$.
- 7. a) Montrer que le rang de f est pair.
 - b) On pose $r = \frac{1}{2} rg(f)$. Déduire des questions précédentes qu'il existe une base orthonormale \mathscr{B} de E et r réels a_1, \ldots, a_r strictement positifs, pas nécessairement distincts, tels que la matrice M de f dans \mathscr{B} soit :

$$M = \begin{pmatrix} 0 & -a_1 \\ a_1 & 0 \\ & 0 & -a_2 \\ & a_2 & 0 \\ & & \ddots \\ & & 0 & -a_r \\ & & a_r & 0 \\ & & & \ddots \\ & & & 0 & -a_r \\ & & & a_r & 0 \\ & & & & \ddots \\ & & & & 0 \end{pmatrix}$$

ou
$$M = \begin{pmatrix} 0 & -a_1 \\ a_1 & 0 & & & (0) \\ & 0 & -a_2 & & \\ & a_2 & 0 & & \\ & & & \ddots & \\ & (0) & & & 0 & -a_r \\ & & & a_r & 0 \end{pmatrix}$$

Exercice 23 (d'après Centrale 2 2022 - PSI)

Structure préhilbertienne de E

On note E l'ensemble des fonctions f continues de \mathbb{R}_+^* dans \mathbb{R} telles que l'intégrale $\int_0^{+\infty} f^2(t) \frac{\mathrm{e}^{-t}}{t} dt \text{ converge.}$

Pour $\alpha \in \mathbb{R}_+^*$, on note p_α la fonction : $\begin{array}{c} \mathbb{R}_+^* & \to & \mathbb{R} \\ t & \mapsto & t^\alpha \end{array} .$

- 1. Montrer que si $f \in E$ et $g \in E$ alors l'intégrale $\int_0^{+\infty} f(t) g(t) \frac{e^{-t}}{t} dt$ est absolument convergente.
- 2. En déduire que E est un sous-espace vectoriel de l'espace $\mathcal{C}(\mathbb{R}_+^*, \mathbb{R})$ des fonctions continues sur \mathbb{R}_+^* et à valeurs dans \mathbb{R} .

Pour tout $f \in E$ et $g \in E$, on pose : $\langle f | g \rangle = \int_0^{+\infty} f(t) g(t) \frac{e^{-t}}{t} dt$.

3. Montrer que l'on définit ainsi un produit scalaire sur E.

La norme $\|\cdot\|$ associée à ce produit scalaire est donc définie pour toute fonction $f\in E$ par :

$$||f|| = \left(\int_0^{+\infty} f^2(t) \frac{e^{-t}}{t} dt\right)^{\frac{1}{2}}$$

4. Montrer que $\lim_{x\to 0} ||k_x|| = 0$.

On rappelle que pour tout x > 0, $k_x(t) = e^{\min(x,t)} - 1$.

- 5. Montrer que, pour tout $k \in \mathbb{N}$, $\int_0^{+\infty} t^k e^{-t} dt = k!$.
- 6. On rappelle que les fonctions p_{α} ont été définies dans les notations en tête de sujet. La famille $(p_n)_{n\in\mathbb{N}^*}$ est-elle une famille orthogonale de E?

Un opérateur sur E

À chaque fonction $f \in E$, on associe la fonction U(f) définie pour tout x > 0 par :

$$U(f)(x) = \langle k_x | f \rangle = \int_0^{+\infty} \left(e^{\min(x,t)} - 1 \right) f(t) \frac{e^{-t}}{t} dt$$

7. À l'aide de l'inégalité de Cauchy-Schwarz, montrer que pour toute fonction $f \in E$:

$$\lim_{\substack{x \to 0 \\ x > 0}} U(f)(x) = 0$$

8. Montrer que pour toute fonction $f \in E$ et pour tout x > 0:

$$U(f)(x) = \int_0^x (1 - e^{-t}) \frac{f(t)}{t} dt + (e^x - 1) \int_0^x f(t) \frac{e^{-t}}{t} dt$$

9. Soit $f \in E$. Montrer que U(f) est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et vérifie, pour tout 19. Montrer l'existence et calculer les valeurs des limites en 0 et en $+\infty$ de la x > 0 :

$$(U(f))'(x) = e^x \int_{r}^{+\infty} f(t) \frac{e^{-t}}{t} dt$$

Dans la suite, pour alléger les notations, la dérivée de la fonction U(f) est notée $|\mathfrak{Z}_1|$. En déduire que $\langle f | U(g) \rangle = \langle U(f) | g \rangle$. U(f)'.

10. Soit $f \in E$. Montrer que U(f) est de classe C^2 sur \mathbb{R}_+^* et que la fonction U(f)est solution sur \mathbb{R}_+^* de l'équation différentielle :

$$y'' - y' = -\frac{f(x)}{x}$$

11. Montrer que pour tout $f \in E$ et pour tout x > 0:

$$|U(f)'(x)| \le e^x ||f|| \left(\int_x^{+\infty} \frac{e^{-t}}{t} dt \right)^{\frac{1}{2}} \le ||f|| \frac{e^{\frac{x}{2}}}{\sqrt{x}}$$

12. Déduire de ce qui précède que U est un endomorphisme de E et que pour tout $f \in E$ et tout x > 0:

$$|U(f)(x)| \le 4 ||f|| \frac{\sqrt{x} e^{\frac{x}{2}}}{1+x}$$

- 13. En déduire : $||U(f)|| \le 4||f||$.
- 14. Montrer que U est injectif.
- 15. L'endomorphisme U est-il surjectif?

On fixe deux fonctions f et g de E. Pour x > 0, on pose :

$$F(x) = -U(f)'(x) e^{-x}$$

- 16. Vérifier que F est une primitive de $x \mapsto f(x) \stackrel{e^{-x}}{\xrightarrow{x}}$ sur l'intervalle \mathbb{R}_+^* .
- 17. Montrer que pour tout x > 0, $|F(x)U(G)(x)| \le \frac{4||f||||g||}{1+x}$.
- **18.** Montrer que pour tout $x \in]0,1], |F(x)| \leq ||f|| (e^{-1} \ln(x))^{\frac{1}{2}}$ On pourra utiliser la question 11.

- function $t \mapsto F(t) U(q)(t)$.
- **20.** Montrer que $\langle f | U(g) \rangle = \int_{0}^{+\infty} U(f)'(t) U(g)'(t) e^{-t} dt$.

Exercice 24 (d'après Centrale 2 2021 - PC)

Polynômes orthogonaux et applications

- Dans tout ce sujet, I est un intervalle de \mathbb{R} d'intérieur non vide et w est une fonction continue et strictement positive de I dans \mathbb{R} ; on dit que w est un poids sur I.
- Étant donné une fonction continue $f:I\to\mathbb{R}$ telle que fw est intégrable sur I, on cherche à approcher l'intégrale $\int_I f(x)\ w(x)\ dx$ par une expression de la forme :

$$I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$$

où $n \in \mathbb{N}$, $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ et $x_0 < x_1 < \dots < x_n$ sont n+1 points distincts dans I.

• Une telle expression $I_n(f)$ est appelée formule de quadrature et on note :

$$e(f) = \int_{I} f(x) w(x) dx - \sum_{j=0}^{n} \lambda_{j} f(x_{j})$$

l'erreur de quadrature associée.

- On remarque que e est une forme linéaire sur l'espace vectoriel des fonctions f de I dans \mathbb{R} telles que f w est intégrable sur I.
- On rappelle qu'un polynôme est dit unitaire si son coefficient dominant est 1.
- Étant donné un entier $m \in \mathbb{N}$, on note $\mathbb{R}_m[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à m. On dit qu'une formule de quadrature $I_n(f)$ est $exacte\ sur\ \mathbb{R}_m[X]$ si :

$$\forall P \in \mathbb{R}_m[X], \ e(P) = 0$$

ce qui signifie que, pour tout polynôme P de degré inférieur ou égal à m :

$$\int_{I} P(x) w(x) dx = \sum_{j=0}^{n} \lambda_{j} P(x_{j})$$

- Enfin, on appelle ordre d'une formule de quadrature $I_n(f)$ le plus grand entier $m \in \mathbb{N}$ pour lequel la formule de quadrature $I_n(f)$ est exacte sur $\mathbb{R}_m[X]$.
- Dans la suite, on note E l'ensemble des fonctions f continues de I dans $\mathbb R$ telles que f^2w est intégrable sur I.

A - Étude d'un produit scalaire

1. Montrer que, pour toutes fonctions f et g de E, le produit f g w est intégrable sur I.

On pourra utiliser l'inégalité : $\forall (a,b) \in \mathbb{R}^2$, $|ab| \leq \frac{1}{2}(a^2 + b^2)$, après l'avoir justifiée.

2. Montrer que E est un \mathbb{R} -espace vectoriel.

Pour toutes fonctions f et g de E, on pose :

$$\langle f, g \rangle = \int_{I} f(x) g(x) w(x) dx$$

3. Montrer qu'on définit ainsi un produit scalaire sur E.

Dans la suite, on munit E de ce produit scalaire et on note $\|\cdot\|$ la norme associée.

B - Polynômes orthogonaux associés à un poids

- On suppose que, pour tout entier $k \in \mathbb{N}$, la fonction $x \mapsto x^k w(x)$ est intégrable sur I. Cela entraı̂ne par linéarité de l'intégrale que E contient toutes les fonctions polynomiales.
- On admet qu'il existe une unique suite de polynômes $(p_n)_{n\in\mathbb{N}}$ telle que :
 - (a) pour tout $n \in \mathbb{N}$, p_n est unitaire
 - (b) pour tout $n \in \mathbb{N}$, $\deg(p_n) = n$,
 - (c) la famille $(p_n)_{n\in\mathbb{N}}$ est orthogonale pour le produit scalaire $\langle \cdot, \cdot \rangle$, autrement dit $\langle p_i, p_j \rangle = 0$, pour $i \neq j \in \mathbb{N}$.

On dit que les (p_n) sont les polynômes orthogonaux associés au poids w.

- On s'intéresse aux racines des polynômes p_n .
- On rappelle que \check{I} désigne l'intérieur de I, c'est-à-dire l'intervalle I privé de ses éventuelles extrémités.

On a donc I =]a, b[, où $a = \inf(I) \in \mathbb{R} \cup \{-\infty\}$ et $b = \sup(I) \in \mathbb{R} \cup \{+\infty\}$.

• Soit $n \in \mathbb{N}^*$. On note x_1, \ldots, x_k les racines distinctes de p_n qui sont dans \mathring{I} et m_1, \ldots, m_k leurs multiplicités respectives. On considère le polynôme

$$q(X) = \prod_{i=1}^{k} (X - x_i)^{\varepsilon_i}, \text{ avec } \varepsilon_i = \begin{cases} 1 & \text{si } m_i \text{ est impair} \\ 0 & \text{si } m_i \text{ est pair} \end{cases}$$

4. En étudiant $\langle p_n, q \rangle$, montrer que p_n possède n racines distinctes dans \mathring{I} .

C - Applications : méthodes de quadrature de Gauss

• Considérons une formule de quadrature :

$$I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$$

où $n \in \mathbb{N}$, $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$ et $x_0 < x_1 < \cdots < x_n$ sont n+1 points distincts dans I.

• On suppose que les coefficients $(\lambda_j)_{0 \leqslant j \leqslant n}$ sont choisis comme suit :

$$\forall j \in \llbracket 0, n
rbracket, \ \lambda_j = \int_I L_j(x) \ w(x) \ dx$$

où (L_0, \ldots, L_n) est la base de Lagrange associée aux points (x_0, \ldots, x_n) . Autrement dit, pour tout $i \in [0, n]$, L_i est l'unique polynôme de $\mathbb{R}_n[X]$ tel que :

$$\forall j \in [0, n], \ L_i(x_j) = \begin{cases} 0 & \text{si } j \neq i \\ 1 & \text{si } j = i \end{cases}$$

- Ainsi, la formule $I_n(f)$ est d'ordre $m \ge n$. Nous allons montrer que dans ces conditions, il existe un unique choix des points $(x_i)_{0 \le i \le n}$ qui permet d'obtenir l'ordre m le plus elevé possible.
- 5. En raisonnant avec le polynôme $\prod_{i=0}^{n} (X x_i)$, montrer que $m \leq 2n + 1$.
- 6. Montrer que m=2n+1 si et seulement si les x_i sont les racines de p_{n+1} .

D - Exemple 1

- On se place ici dans le cas où I = [-1, 1] et w(x) = 1.
- On est donc bien dans les conditions d'application des résultats précédemment obtenus.
- 7. Déterminer les quatre premiers polynômes orthogonaux (p_0, p_1, p_2, p_3) associés au poids w.
- 8. En déduire explicitement une formule de quadrature d'ordre 5 (on déterminera les points x_j et les coefficients λ_j).

E - Exemple 2

- Dans cette sous-partie, I =]-1,1[et $w(x) = \frac{1}{\sqrt{1-x^2}}$.
- 9. Montrer que, pour tout entier $k \in \mathbb{N}$, la fonction $x \mapsto x^k w(x)$ est intégrable sur I.

Cela entraı̂ne que E contient toutes les fonctions polynomiales.

Dans la suite, on considère, pour tout entier $n \in \mathbb{N}$, la fonction :

$$Q_n: \begin{vmatrix} [-1,1] & \to & \mathbb{R} \\ x & \mapsto & \cos(n\arccos(x)) \end{vmatrix}$$

- 10. Calculer Q_0, Q_1 et pour tout $n \in \mathbb{N}$, exprimer simplement Q_{n+2} en fonction de Q_{n+1} et Q_n .
- 11. En déduire que, pour tout $n \in \mathbb{N}$, Q_n est polynomiale et déterminer son degré et son coefficient dominant.

Dans la suite, on notera également Q_n le polynôme de $\mathbb{R}[X]$ qui coïncide avec $x \mapsto Q_n(x)$ sur [-1,1].

12. On note $(p_n)_{n\in\mathbb{N}}$ la suite de polynômes orthogonaux associés au poids w. Montrer :

$$\begin{cases} p_0 = Q_0 \\ \forall n \in \mathbb{N}^*, \ p_n = \frac{1}{2^{n-1}} \ Q_n \end{cases}$$

13. Pour $n \in \mathbb{N}$, déterminer explicitement les points $(x_j)_{0 \leqslant j \leqslant n}$ de I telle que la formule de quadrature $I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$ soit d'ordre maximal.

Exercice 25 (d'après CCINP 2022 PSI)

Présentation

• Ce problème s'intéresse dans la **partie I** à des propriétés des matrices de rang 1. Certaines de ces matrices sont ensuite utilisées dans la **partie II** pour construire des matrices orthogonales permettant dans la **partie III** de prouver l'existence d'une factorisation QR pour une matrice carrée quelconque.

Notations

- Pour tous $n, p \in \mathbb{N} \setminus \{0\}$, on note $\mathcal{M}_{n,p}(\mathbb{R})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{R} . L'ensemble des matrices réelles carrées de taille n est noté $\mathcal{M}_n(\mathbb{R})$.
- Soit $A \in \mathcal{M}_n(\mathbb{R})$: on note également A l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ qui à X associe AX.
- Pour tout $A \in \mathcal{M}_{n,p}(\mathbb{R})$, A^T désigne la matrice transposée de A.
- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite nilpotente s'il existe un entier $k \in \mathbb{N} \setminus \{0\}$ tel que : $A^k = 0_{\mathcal{M}_n(\mathbb{R})}$.
- L'ensemble $\mathcal{M}_{n,1}(\mathbb{R})$ est muni de son produit scalaire canonique $\langle \cdot, \cdot \rangle$ et de la norme associée $\|\cdot\|$.
- En identifiant $\mathcal{M}_1(\mathbb{R})$ et \mathbb{R} , on a pour tous $X,Y \in \mathcal{M}_{n,1}(\mathbb{R})$:

$$\langle X, Y \rangle = X^T Y$$
 et $||X||^2 = \langle X, X \rangle$

• On suppose dans tout ce problème que n est un entier tel que $n \ge 2$.

Partie I – Matrices de rang 1

I.1 – Une expression des matrices de rang 1

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1. Montrer qu'il existe $(X,Y) \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0_{\mathcal{M}_{n,1}(\mathbb{R})}\}$ tels que : $A = XY^T$.
- 2. Réciproquement, soit $(X,Y) \in \left(\mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0_{\mathcal{M}_{n,1}(\mathbb{R})}\}\right)^2$. Montrer que la matrice XY^T est de rang 1.

I.2 – Quelques propriétés

- Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.
- 3. Montrer que $A^2 = \operatorname{tr}(A) A$.
- **4.** En déduire, par récurrence sur k, une expression de A^k en fonction de A pour tout $k \in \mathbb{N} \setminus \{0\}$.
- ${\it 5.}$ Donner une condition nécessaire et suffisante sur la trace de ${\it A}$ pour que ${\it A}$ soit nilpotente.

6. Donner une condition nécessaire et suffisante sur la trace de A pour que A soit diagonalisable.

Partie II – Matrices de Householder

II.1 – Un exemple

• On définit :

$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

- 7. Calculer A^2 . En déduire un polynôme annulateur de A.
- 8. Déterminer les valeurs propres et les vecteurs propres de A.
- g. Montrer que les sous-espaces propres de A sont orthogonaux.
- 10. Déterminer une matrice $P \in \mathcal{O}_3(\mathbb{R})$ et une matrice diagonale $D \in \mathcal{M}_3(\mathbb{R})$, telles que : $P^TAP = D$.
- 11. Interpréter géométriquement l'endomorphisme A de $\mathcal{M}_{3,1}(\mathbb{R})$.

II.2 – Matrices de Householder

• Soit $V \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0_{\mathcal{M}_{n,1}(\mathbb{R})}\}$. On définit $(P_V, Q_V) \in \left(\mathcal{M}_n(\mathbb{R})\right)^2$ par :

$$P_V = \frac{1}{\|V\|^2} V V^T$$
, et $Q_V = I_n - 2 \frac{1}{\|V\|^2} V V^T$ (1)

- 12. Montrer que $\operatorname{Im}(P_V) = \operatorname{Vect}(V)$ et que $\operatorname{Ker}(P_V) = \operatorname{Vect}(V)^{\perp}$.
- 13. Montrer que P_V est la projection orthogonale sur la droite Vect(V). Préciser le rang et la trace de la matrice P_V .
- 14. Montrer que Q_V est symétrique et orthogonale.
- 5. Donner une condition nécessaire et suffisante sur la trace de A pour que A soit | 15. Montrer que Q_V est la symétrie orthogonale par rapport à $\operatorname{Vect}(V)^{\perp}$.

Partie III – Factorisation QR

III.1 – Un résultat préliminaire

- Soient $(U, V) \in \mathcal{M}_{n,1}(\mathbb{R})^3$, tel que : ||U|| = ||V||.
- On note : D = Vect(U V).
- 16. Montrer que D^{\perp} est l'ensemble des $X \in \mathcal{M}_{n,1}(\mathbb{R})$, tels que :

$$||X - U|| = ||X - V||$$

- 17. Donner la décomposition de U sur la somme directe $\mathcal{M}_{n,1}(\mathbb{R}) = D \oplus D^{\perp}$.
- 18. On suppose U et V non colinéaires. Calculer $Q_{U-V}U$ où Q_{U-V} est définie en (1).
- 19. En déduire que pour tout $(\tilde{U}, \tilde{V}) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2$, il existe une matrice orthogonale Q, telle que $Q\tilde{U}$ soit colinéaire à \tilde{V} .

III.2 – Factorisation QR

20. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une matrice orthogonale Q_1 , telle que Q_1A soit de la forme :

$$Q_1 A = \begin{pmatrix} \alpha & * & \cdots & * \\ 0 & & & \\ \vdots & & C_1 \\ 0 & & & \end{pmatrix} \quad \text{où } \alpha \in \mathbb{R} \text{ et } C_1 \in \mathscr{M}_{n,1}(\mathbb{R})$$

21. En raisonnant par récurrence sur n, montrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, il existe une matrice Q orthogonale, telle que QA soit triangulaire supérieure.

Exercice 26 (d'après Centrale 2018 - PSI)

L'opérateur de Sylvester

• On définit les opérateurs :

$$\mathcal{S}: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$
 et $\mathcal{S}^*: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ $X \mapsto NX - XN$

1. Montrer que le noyau de $\mathcal S$ est l'ensemble des matrices de Toeplitz réelles triangulaires inférieures.

On admet que le noyau de \mathcal{S}^* est l'ensemble des matrices de Toeplitz réelles triangulaires supérieures.

- 2. Montrer que $S(\Delta_{k+1}) \subset \Delta_k$ et $S^*(\Delta_k) \subset \Delta_{k+1}$.
- On munit $\mathscr{M}_n(\mathbb{R})$ de son produit scalaire usuel défini par :

$$\forall (M_1, M_2) \in (\mathcal{M}_n(\mathbb{R}))^2, \langle M_1, M_2 \rangle = \operatorname{tr}(^t M_1 M_2)$$

- On note S_{k+1} la restriction de S à Δ_{k+1} et S_k^* la restriction de S^* à Δ_k .
- 3. Vérifier que pour tous X dans Δ_{k+1} et Y dans Δ_k , $\langle \mathcal{S}_{k+1}X, Y \rangle = \langle X, \mathcal{S}_k^*Y \rangle$. En déduire que $\text{Ker}(\mathcal{S}_k^*)$ et $\text{Im}(\mathcal{S}_{k+1})$ sont supplémentaires orthogonaux dans Δ_k , c'est-à-dire:

$$\Delta_k = \operatorname{Ker}(\mathcal{S}_k^*) \oplus^{\perp} \operatorname{Im}(\mathcal{S}_{k+1})$$

- 4. Soient T une matrice triangulaire supérieure, A = N + T et $k \ge 0$. Montrer que A est semblable à une matrice L dont tous les coefficients diagonaux d'ordre k sont égaux et vérifiant $\forall i \in [-1, k-1]$, $L^{(i)} = A^{(i)}$.
- ${\it 5.}\,$ En déduire que toute matrice cyclique est semblable à une matrice de Toeplitz.

Exercice 27 (d'après CCINP 2021 - MP2)

- Soit $n \ge 2$ un entier naturel.
- On note $\mathcal{D}_n(\mathbb{R})$ le sous-espace vectoriel des matrices diagonales de $\mathcal{M}_n(\mathbb{R})$.
- On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire canonique définit par :

$$\forall (A,B) \in \left(\mathscr{M}_n(\mathbb{R})\right)^2, \ \langle A,B \rangle = \operatorname{tr}\left({}^t AB\right)$$

Déterminer $(\mathscr{D}_n(\mathbb{R}))^{\perp}$, l'orthogonal de $\mathscr{D}_n(\mathbb{R})$ pour ce produit scalaire.

Exercice 28 (d'après CCINP 2019 - MP2)

- Soit E un espace euclidien muni d'un produit scalaire noté $\langle \cdot, \cdot \rangle$.
- Pour tout $x \in E$, on note : $||x||^2 = \langle x, x \rangle$.
- 1. Un endomorphisme u de E vérifiant :

$$\forall x \in E, \ \langle u(x), x \rangle = 0$$

est-il nécessairement l'endomorphisme nul?

2. Étant donné un endomorphisme u de E, on admet qu'il existe un unique endomorphisme v de E vérifiant :

$$\forall (x,y) \in E^2, \langle u(x), y \rangle = \langle x, v(y) \rangle$$

Démontrer l'équivalence des trois propriétés suivantes :

- (i) $u \circ v = v \circ u$
- (ii) $\forall (x,y) \in E^2$, $\langle u(x), u(y) \rangle = \langle v(x), v(y) \rangle$
- (iii) $\forall x \in E, ||u(x)|| = ||v(x)||.$

(on pourra par exemple, successivement prouver les implications :

$$(i) \Rightarrow (ii), (ii) \Rightarrow (iii), (iii) \Rightarrow (ii) \ et \ (ii) \Rightarrow (i))$$

Exercice 29 (d'après CCINP 2015 - MP1)

- Toutes les fonctions étudiées dans ce problème sont à valeurs réelles. On pourra identifier un polynôme et la fonction polynomiale associée.
- On rappelle le théorème d'approximation de Weierstrass pour une fonction continue sur [a,b]: si f est une fonction continue sur [a,b], il existe une suite de fonctions polynômes (P_n) qui conerge uniformément vers la fonction f sur [a,b].

Soit f une fonction continue sur [a, b]. On suppose que pour tout entier naturel k, $\int_a^b x^k f(x) dx = 0.$

- 1. a) Si P est une fonction polynôme, que vaut l'intégrale $\int_a^b P(x) f(x) dx$?
 - b) Démontrer, en utilisant le théorème de Weierstrass, que nécessairement f est la fonction nulle. On pourra utiliser sans le démontrer le résultat suivant : si (g_n) est une suite de fonctions qui converge uniformément vers une fonction g sur une partie I de \mathbb{R} et si f est une fonction bornée sur I, alors la suite de fonctions $(f \times g_n)$ converge uniformément sur I vers la fonction $f \times g$.

2. Application

Soit E l'espace vectoriel des applications continues de [a,b] dans \mathbb{R} muni du produit scalaire défini pour tout couple (f,g) d'éléments de E par :

$$\langle f, g \rangle = \int_a^b f(x) g(x) dx$$

On note F le sous-espace vectoriel de E formé des fonctions polynômes définies sur [a,b] et F^{\perp} l'orthogonal de F. Déterminer F^{\perp} . A-t-on $E=F\oplus F^{\perp}$?

Exercice 30 (d'après CCINP 2018 - MP2)

- On note E l'espace vectoriel des applications continues sur le segment [-1,1] et à valeurs réelles.
- 1. Démontrer que l'on définit un produit scalaire sur E en posant pour f et g éléments de E :

$$\langle f, g \rangle = \int_{-1}^{1} f(t) g(t) dt$$

- 2. On note $u: t \mapsto 1$, $v: t \mapsto t$, et F = Vect(u, v). Déterminer une base orthonormée de F.
- 3. Déterminer le projeté orthogonal de la fonction $w: t \mapsto e^t$ sur le sous-espace F et en déduire la valeur du réel :

$$\inf_{(a,b)\in\mathbb{R}^2} \left(\int_{-1}^1 \left(e^t - (a+bt) \right)^2 dt \right)$$

On pourra simplifier les calculs en utilisant le théorème de Pythagore.