PCSI

Programme de colle - Semaine 13

Notation

On adoptera les principes suivants pour noter les étudiants :

- \times si l'étudiant sait répondre à la question de cours, il aura une note > 8.
- \times si l'étudiant ne sait pas répondre à la question de cours ou s'il y a trop d'hésitations, il aura une note ≤ 8 .

Questions de cours

• Suite arithmético-géométrique

On demandera à l'étudiant de déterminer explicitement le terme général d'une suite arithmético-géométrique.

Par exemple, déterminer explicitement le terme général de la suite (u_n) définie par :

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 3 u_n + 2 \end{cases}$$

 $D\'{e}monstration.$

• L'équation de point fixe associée à la suite (u_n) est : $x = 3 \times x + 2$. Soit $x \in \mathbb{R}$.

$$x = 3 \times x + 2 \iff 2 \times x = -2$$

Cette équation a donc pour unique solution : c = -1.

• Soit $n \in \mathbb{N}$.

$$\begin{cases} u_{n+1} = 3u_n + 2 \\ c = 3c + 2 \end{cases}$$

En effectuant l'opération $L_1 \leftarrow L_1 - L_2,$ on obtient :

$$u_{n+1} - c = (3u_n + 2) - (3c + 2) = 3(u_n - c)$$

On note alors : $v_n = u_n - c$.

La suite (v_n) est donc géométrique de raison 3.

• On en déduit, pour tout $n \in \mathbb{N}$:

$$v_n = 3^n \times v_0 = 3^n (u_0 - c) = 3^n (0 - (-1)) = 3^n$$

• On en conclut, pour tout $n \in \mathbb{N}$:

$$u_n = v_n + c = 3^n - 1$$

• Suite récurrente linéaire d'ordre 2

On demandera à l'étudiant de déterminer explicitement le terme général d'une suite récurrente linéaire d'ordre 2.

Par exemple, déterminer le terme général de la suite (u_n) définie par :

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n \end{cases}$$

Démonstration.

• L'équation caractéristique associée à la suite (u_n) est : $x^2 = x + 1$. On note Δ le discriminant du polynôme Q défini par : $Q(X) = X^2 - X - 1$.

$$\Delta = (-1)^2 - 4(-1) = 1 + 4 = 5 > 0$$

Ce polynôme admet donc deux racines réelles disctinctes :

$$r_1 = \frac{1 - \sqrt{5}}{2}$$
 et $r_2 = \frac{1 + \sqrt{5}}{2}$

• On en déduit qu'il existe $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{N}, \quad u_n = \lambda_1 \times r_1^n + \lambda_2 \times r_2^n$$

• Déterminons les valeurs de λ_1 et λ_2 .

$$\begin{cases} 0 = \lambda_1 + \lambda_2 & (valeur \ en \ n = 0) \\ 1 = \lambda_1 \times r_1 + \lambda_2 \times r_2 & (valeur \ en \ n = 1) \end{cases}$$

Résolvons ce système.

$$\begin{cases} \lambda_1 + \lambda_2 = 0 & \underset{L_2 \leftarrow L_2 - r_1 L_1}{\longleftrightarrow} \\ r_1 \lambda_1 + r_2 \lambda_2 = 1 \end{cases} \qquad \begin{cases} \lambda_1 + \lambda_2 = 0 \\ (r_2 - r_1) \lambda_2 = 1 \end{cases}$$

$$\underset{L_1 \leftarrow (r_2 - r_1) L_1 - L_2}{\longleftrightarrow} \qquad \begin{cases} (r_2 - r_1) \lambda_1 & = -1 \\ (r_2 - r_1) \lambda_2 = 1 \end{cases}$$

De plus :
$$r_2 - r_1 = \frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2} = \sqrt{5}$$
.
On en déduit que : $\lambda_1 = -\frac{1}{\sqrt{5}}$ et $\lambda_2 = \frac{1}{\sqrt{5}}$.

• Ainsi, pour tout $n \in \mathbb{N}$, on a:

$$u_n = -\frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n + \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n$$

• Propriétés de $\|\cdot\|_{\infty}$

On note E l'ensemble des fonctions bornées.

Pour tout $f \in E$, on note : $A_f = \{ |f(x)| | x \in [0,1] \}$.

Pour tout $f \in E$, on note : $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)| = \sup(A_f)$. Alors $||\cdot||_{\infty}$ est une norme sur E.

Autrement dit, l'application $\|\cdot\|_{\infty}$ vérifie les propriétés suivantes :

1) Séparation :

$$\forall f \in E, \quad \|f\|_{\infty} = 0 \iff f = 0_{\mathbb{R}^{[0,1]}}$$

2) Homogénéité:

$$\forall \lambda \in \mathbb{R}, \ \forall f \in E, \quad \|\lambda \cdot f\|_{\infty} = \|\lambda\| \times \|f\|_{\infty}$$

3) Inégalité triangulaire :

$$\forall (f,g) \in E^2, \quad ||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$$

On démontrera uniquement le point 2.

$D\'{e}monstration.$

Tout d'abord, remarquons que, pour tout $f \in E$, la quantité $||f||_{\infty}$ est bien définie.

En effet, comme f est bornée, alors |f| est majorée. Ainsi l'ensemble $A_f = \{ |f(x)| \mid x \in [0,1] \}$ est non vide et majoré. On en déduit que $\sup(A_f)$ existe.

2) Soit $\lambda \in \mathbb{R}$. Soit $f \in E$.

On commence par remarquer que $\lambda \cdot f \in E$. Ainsi $\|\lambda \cdot f\|_{\infty}$ est bien définie. Deux cas se présentent.

• Si $\lambda = 0$, alors :

× d'une part :
$$\|0 \cdot f\|_{\infty} = \|0_{\mathbb{R}^{[0,1]}}\| = 0$$
 (d'après 1.)

$$\times$$
 d'autre part : $|0| \times ||f||_{\infty} = 0$.

L'égalité souhaitée est donc vraie pour $\lambda = 0$.

• Si $\lambda \neq 0$. Soit $x \in [0,1]$. On remarque tout d'abord :

$$|\lambda \times f(x)| = |\lambda| \times |f(x)|$$
 (*)

On procède ensuite par double inégalité.

(≤) Le réel $||f||_{\infty}$ est un majorant de A_f . Ainsi, pour tout $x \in [0,1]$:

$$|f(x)| \leq ||f||_{\infty}$$

Comme $|\lambda| \ge 0$, on en déduit :

$$|\lambda| \times |f(x)| \leq |\lambda| \times ||f||_{\infty}$$

 $|\lambda \times f(x)|$

D'où:

$$\forall x \in [0,1], \quad |(\lambda \cdot f)(x)| \leq |\lambda| \times ||f||_{\infty}$$

Ainsi, $|\lambda| ||f||_{\infty}$ est un majorant de $A_{\lambda \cdot f}$.

Or $\|\lambda \cdot f\|_{\infty}$ est le plus petit des majorants de $A_{\lambda \cdot f}$. On en conclut :

$$\|\lambda \cdot f\|_{\infty} \leqslant \|\lambda\| \|f\|_{\infty}$$

 (\geqslant) Le réel $\|\lambda\cdot f\|_{\infty}$ est un majorant de $A_{\lambda\cdot f}$. Ainsi, pour tout $x\in[0,1]$:

$$\left| (\lambda \cdot f)(x) \right| \leqslant \|\lambda \cdot f\|_{\infty}$$

$$|\lambda| \times \left| f(x) \right| = \left| \lambda \times f(x) \right|$$

Comme $|\lambda| > 0$, on en déduit :

$$\forall x \in [0,1], \quad |f(x)| \leqslant \frac{1}{|\lambda|} \|\lambda \cdot f\|_{\infty}$$

Ainsi, $\frac{1}{|\lambda|} \|\lambda \cdot f\|_{\infty}$ est un majorant de A_f .

Or $||f||_{\infty}$ est le plus petit des majorants de A_f . On en conclut :

$$||f||_{\infty} \leqslant \frac{1}{|\lambda|} ||\lambda \cdot f||_{\infty}$$

Comme $|\lambda| > 0$, on obtient : $|\lambda| \times ||f||_{\infty} \le ||\lambda \cdot f||_{\infty}$.

• Convergence et caractère borné

Toute suite convergente est bornée.

 $D\'{e}monstration.$

Notons ℓ la limite de la suite (u_n) .

• Choisissons une précision $\varepsilon = 1$.

Alors, il existe $n_0 \in \mathbb{N}$ tel que, pour tout $n \ge n_0 : |u_n - \ell| < 1$.

Par inégalité triangulaire :

$$||u_n| - |\ell|| \leqslant |u_n - \ell| \leqslant 1$$

Ainsi : $-1 \leqslant |u_n| - |\ell| \leqslant 1$. En particulier :

$$|u_n| \leq |\ell| + 1$$

La suite (u_n) est donc bornée à partir d'un certain rang $(n_0$ en l'occurrence).

• Il reste à montrer qu'elle est bornée tout court. Pour ce faire, on doit considérer les éléments de la suite précédant le rang $n_0: u_0, u_1, \ldots, u_{n_0-1}$.

Ces éléments sont en nombre fini et leurs modules possèdent donc un maximum $A = \max\{|u_n| \mid n \in [0, n_0 - 1]\}$. Ainsi :

$$\forall n \in [0, n_0 - 1], \ |u_n| \leqslant A$$

• Si on note $M = \max(A, |\ell| + 1)$, on a alors:

$$\forall n \in \mathbb{N}, |u_n| \leqslant M$$

• Théorème de Césaro

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. On note (c_n) la suite définie par :

$$\forall n \in \mathbb{N}^*, \quad c_n = \frac{1}{n} \sum_{k=1}^n u_k$$

On nomme cette suite moyenne de Césaro de la suite (u_n) .

$$u_n \underset{n \to +\infty}{\longrightarrow} \ell \qquad \Rightarrow \qquad c_n \underset{n \to +\infty}{\longrightarrow} \ell$$

 $D\'{e}monstration.$

Soit $\varepsilon > 0$.

• Tout d'abord, pour tout $n \in \mathbb{N}^*$:

$$|c_{n} - \ell| = \left| \frac{1}{n} \sum_{k=1}^{n} u_{k} - \ell \right|$$

$$= \left| \frac{1}{n} \left(\sum_{k=1}^{n} u_{k} - n \ell \right) \right|$$

$$= \frac{1}{n} \left| \sum_{k=1}^{n} u_{k} - \sum_{k=1}^{n} \ell \right|$$

$$= \frac{1}{n} \left| \sum_{k=1}^{n} (u_{k} - \ell) \right|$$

$$\leqslant \frac{1}{n} \sum_{k=1}^{n} |u_{k} - \ell| \qquad (par inégalité triangulaire)$$

• De plus, comme la suite (u_n) converge vers ℓ , alors il existe $n_1 \in \mathbb{N}^*$ tel que :

$$\forall k \geqslant n_1, \ |u_k - \ell| < \frac{\varepsilon}{2}$$

Soit $n \geqslant n_1$.

En sommant ces inégalité pour k variant de n_1 à n, on obtient :

$$\sum_{k=n_1}^{n} |u_k - \ell| < \sum_{k=n_1}^{n} \frac{\varepsilon}{2} = (n - n_1 + 1) \frac{\varepsilon}{2}$$

D'où, comme $\frac{1}{n} > 0$:

$$\frac{1}{n} \sum_{k=n_1}^{n} |u_k - \ell| < \frac{n - n_1 + 1}{n} \times \frac{\varepsilon}{2}$$

On en déduit :

$$|c_{n} - \ell| \leq \frac{1}{n} \sum_{k=1}^{n} |u_{k} - \ell|$$

$$\leq \frac{1}{n} \left(\sum_{k=1}^{n_{1}-1} |u_{k} - \ell| + \sum_{k=n_{1}}^{n} |u_{k} - \ell| \right)$$

$$\leq \frac{1}{n} \sum_{k=1}^{n_{1}-1} |u_{k} - \ell| + \frac{1}{n} \sum_{k=n_{1}}^{n} |u_{k} - \ell|$$

$$\leq \frac{1}{n} \sum_{k=1}^{n_{1}-1} |u_{k} - \ell| + \frac{n - n_{1} + 1}{n} \times \frac{\varepsilon}{2}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n_{1}-1} |u_{k} - \ell| + \frac{\varepsilon}{2} \qquad (car, comme \ n \geqslant n_{1}, alors : \frac{n - n_{1} + 1}{n} \leqslant 1)$$

• Enfin, comme $\sum\limits_{k=1}^{n_1-1} |u_k-\ell|$ ne dépend pas de n, alors :

$$\frac{1}{n} \sum_{k=1}^{n_1 - 1} |u_k - \ell| \underset{n \to +\infty}{\longrightarrow} 0$$

On en déduit qu'il existe $n_2 \in \mathbb{N}^*$ tel que :

$$\forall n \geqslant n_2, \quad \frac{1}{n} \sum_{k=1}^{n_1-1} |u_k - \ell| < \frac{\varepsilon}{2}$$

On pose alors: $n_0 = \max(n_1, n_2)$. On obtient, pour tout $n \ge n_0$:

$$|c_n - \ell| \leqslant \frac{1}{n} \sum_{k=1}^{n_1 - 1} |u_k - \ell| + \frac{\varepsilon}{2} \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Ce qui démontre : $c_n \xrightarrow[n \to +\infty]{} \ell$.

Connaissances exigibles

L'ensemble \mathbb{R}

- Propriétés de + et \times
- Notion d'ordre total dans \mathbb{R} : définitions de \leq , \geq , < et >, règles de calculs sur ces opérateurs.
- Majorant, minorant d'une partie de \mathbb{R}
- Maximum, minimum d'une partie de R : définitions et unicité en cas d'existence
- Borne supérieure, borne inférieure : définitions, caractérisations, lien avec le maximum / minimum
- Intervalles : définition, convexité
- Ensemble N : axiomatique de Peano et premières propriétés
- Ensemble Z : définition et premières propriétés
- Ensemble \mathbb{Q} : définition, densité de \mathbb{Q} dans \mathbb{R} , approximation explicite d'un réel par une suite de rationnels.

Suites numériques

- Montonie, stationnarité d'une suite
- Majorant, minorant d'une suite
- Borne supérieure, borne inférieure d'une suite
- Maximum, minimum d'une suite
- Suite extraite
- Suites usuelles : arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre 2
- Suites convergentes :
 - × définition
 - x caractérisation avec la convergence de la partie réelle et imaginaire pour les suites complexes
 - × unicité de la limite
 - × toute suite convergente est bornée
 - × toute suite extraite d'une suite convergente est convergente

- × propriété de recouvrement
- × opérations sur les suites convergentes
- × théorème de composition de limites
- × compatibilité avec la relation d'ordre
- × théorème d'encadrement
- Suites divergentes :
 - × définition
 - \times suites divergeant vers $\pm \infty$
 - \times toute suite divergeant vers $+\infty$ est positive à partir d'un certain rang (et l'équivalent en $-\infty$)
 - \times opérations et formes indéterminées
 - × compatibilité avec la relation d'ordre
 - × compatibilité avec la valeur absolue
 - \times théorème de composition de limites
- Théorèmes de convergence monotone
- Suites adjacentes : définition, théorème des suites adjacentes
- Étude de suites récurrentes
- Étude de suites implicites
- Équivalence, négligeabilité

On sanctionnera fortement les points suivants :

- \times toute confusion d'objets,
- × toute confusion variable libre / liée (ou muette),
- x tout oubli d'introduction de variable (cela rejoint le point précédent),
- \times toute erreur de logique (absence ou erreur de connecteur logique par exemple),
- \times tout manque de réflexe dans l'utilisation des structures de démonstration.