Programme de colle - Semaine 14

Notation

On adoptera les principes suivants pour noter les étudiants :

- × si l'étudiant sait répondre à la question de cours, il aura une note > 8.
- \times si l'étudiant ne sait pas répondre à la question de cours ou s'il y a trop d'hésitations, il aura une note ≤ 8 .

Questions de cours

• Convergence et caractère borné

Toute suite convergente est bornée.

 $D\'{e}monstration.$

Notons ℓ la limite de la suite (u_n) .

• Choisissons une précision $\varepsilon = 1$.

Alors, il existe $n_0 \in \mathbb{N}$ tel que, pour tout $n \ge n_0 : |u_n - \ell| < 1$.

Par inégalité triangulaire :

$$||u_n| - |\ell|| \leqslant |u_n - \ell| \leqslant 1$$

Ainsi : $-1 \leqslant |u_n| - |\ell| \leqslant 1$. En particulier :

$$|u_n| \leqslant |\ell| + 1$$

La suite (u_n) est donc bornée à partir d'un certain rang $(n_0$ en l'occurrence).

• Il reste à montrer qu'elle est bornée tout court. Pour ce faire, on doit considérer les éléments de la suite précédant le rang $n_0: u_0, u_1, \ldots, u_{n_0-1}$.

Ces éléments sont en nombre fini et leurs modules possèdent donc un maximum $A = \max\{|u_n| \mid n \in [0, n_0 - 1]\}$. Ainsi :

$$\forall n \in [0, n_0 - 1], |u_n| \leq A$$

• Si on note $M = \max(A, |\ell| + 1)$, on a alors:

$$\forall n \in \mathbb{N}, |u_n| \leqslant M$$

• Théorème de Césaro

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. On note (c_n) la suite définie par :

$$\forall n \in \mathbb{N}^*, \quad c_n = \frac{1}{n} \sum_{k=1}^n u_k$$

On nomme cette suite moyenne de Césaro de la suite (u_n) .

$$u_n \underset{n \to +\infty}{\longrightarrow} \ell \qquad \Rightarrow \qquad c_n \underset{n \to +\infty}{\longrightarrow} \ell$$

 $D\'{e}monstration.$

Soit $\varepsilon > 0$.

• Tout d'abord, pour tout $n \in \mathbb{N}^*$:

$$|c_{n} - \ell| = \left| \frac{1}{n} \sum_{k=1}^{n} u_{k} - \ell \right|$$

$$= \left| \frac{1}{n} \left(\sum_{k=1}^{n} u_{k} - n \ell \right) \right|$$

$$= \frac{1}{n} \left| \sum_{k=1}^{n} u_{k} - \sum_{k=1}^{n} \ell \right|$$

$$= \frac{1}{n} \left| \sum_{k=1}^{n} (u_{k} - \ell) \right|$$

$$\leqslant \frac{1}{n} \sum_{k=1}^{n} |u_{k} - \ell| \qquad (par inégalité triangulaire)$$

• De plus, comme la suite (u_n) converge vers ℓ , alors il existe $n_1 \in \mathbb{N}^*$ tel que :

$$\forall k \geqslant n_1, \ |u_k - \ell| < \frac{\varepsilon}{2}$$

Soit $n \geqslant n_1$.

En sommant ces inégalité pour k variant de n_1 à n, on obtient :

$$\sum_{k=n_1}^{n} |u_k - \ell| < \sum_{k=n_1}^{n} \frac{\varepsilon}{2} = (n - n_1 + 1) \frac{\varepsilon}{2}$$

D'où, comme $\frac{1}{n} > 0$:

$$\frac{1}{n} \sum_{k=n_1}^{n} |u_k - \ell| < \frac{n - n_1 + 1}{n} \times \frac{\varepsilon}{2}$$

On en déduit :

$$|c_{n} - \ell| \leq \frac{1}{n} \sum_{k=1}^{n} |u_{k} - \ell|$$

$$\leq \frac{1}{n} \left(\sum_{k=1}^{n_{1}-1} |u_{k} - \ell| + \sum_{k=n_{1}}^{n} |u_{k} - \ell| \right)$$

$$\leq \frac{1}{n} \sum_{k=1}^{n_{1}-1} |u_{k} - \ell| + \frac{1}{n} \sum_{k=n_{1}}^{n} |u_{k} - \ell|$$

$$\leq \frac{1}{n} \sum_{k=1}^{n_{1}-1} |u_{k} - \ell| + \frac{n - n_{1} + 1}{n} \times \frac{\varepsilon}{2}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n_{1}-1} |u_{k} - \ell| + \frac{\varepsilon}{2} \qquad (car, comme \ n \geqslant n_{1}, alors : \frac{n - n_{1} + 1}{n} \leqslant 1)$$

• Enfin, comme $\sum_{k=1}^{n_1-1} |u_k-\ell|$ ne dépend pas de n, alors :

$$\frac{1}{n} \sum_{k=1}^{n_1 - 1} |u_k - \ell| \underset{n \to +\infty}{\longrightarrow} 0$$

On en déduit qu'il existe $n_2 \in \mathbb{N}^*$ tel que :

$$\forall n \geqslant n_2, \quad \frac{1}{n} \sum_{k=1}^{n_1-1} |u_k - \ell| < \frac{\varepsilon}{2}$$

On pose alors: $n_0 = \max(n_1, n_2)$. On obtient, pour tout $n \ge n_0$:

$$|c_n - \ell| \leqslant \frac{1}{n} \sum_{k=1}^{n_1 - 1} |u_k - \ell| + \frac{\varepsilon}{2} \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Ce qui démontre : $c_n \xrightarrow[n \to +\infty]{} \ell$.

• Théorème d'encadrement

Soit $f, g, h: I \to \mathbb{R}$.

Soit $x_0 \in \overline{I}$ et soit $\ell \in \mathbb{R}$.

Supposons que:

 $\times f \leqslant g \leqslant h$ au voisinage de x_0 ,

imes f admet la limite finie ℓ en $x_0:\lim_{x o x_0} f(x) = \ell,$

 \times h admet la limite finie ℓ en $x_0: \lim_{x \to x_0} h(x) = \ell$.

Alors la fonction g admet une limite finie en x_0 . De plus, $\lim_{x\to x_0} g(x) = \ell$.

 $D\'{e}monstration.$

Supposons:

× qu'il existe $\alpha_1 > 0$ tel que : $\forall x \in]x_0 - \alpha_1, x_0 + \alpha_1[, f(x) \leq g(x) \leq h(x).$

× que : $\lim_{x\to x_0} f(x) = \ell$. Autrement dit :

$$\forall \varepsilon > 0, \ \exists \alpha_2 > 0, \ \forall x \in I, (|x - x_0| \leqslant \alpha_2 \Rightarrow |f(x) - \ell| \leqslant \varepsilon)$$

 \times que : $\lim_{x \to x_0} h(x) = \ell$. Autrement dit :

$$\forall \varepsilon > 0, \ \exists \alpha_2 > 0, \ \forall x \in I, \left(|x - x_0| \leqslant \alpha_3 \ \Rightarrow \ \left| h(x) - \ell \right| \leqslant \varepsilon \right)$$

Soit $\varepsilon > 0$. Alors:

 \times il existe $\alpha_2 > 0$ tel que, pour tout $x \in I$:

$$|x - x_0| \leqslant \alpha_2 \implies |f(x) - \ell| \leqslant \varepsilon$$

× il existe $\alpha_3 > 0$ tel que, pour tout $x \in I$:

$$|x - x_0| \leqslant \alpha_2 \implies |h(x) - \ell| \leqslant \varepsilon$$

On pose alors : $\alpha_0 = \min(\alpha_1, \alpha_2, \alpha_3)$.

Soit $x \in I$. Supposons : $|x - x_0| \le \alpha_0$. On obtient :

 \times tout d'abord, comme $|x-x_0| \leqslant \alpha_0 \leqslant \alpha_1$, alors :

$$f(x) \leqslant g(x) \leqslant h(x)$$

× ensuite, comme $|x-x_0| \leqslant \alpha_0 \leqslant \alpha_2$, alors : $|f(x)-\ell| \leqslant \varepsilon$. D'où :

$$\ell - \varepsilon \leqslant f(x) \leqslant \ell + \varepsilon$$

× ensuite, comme $|x-x_0| \leqslant \alpha_0 \leqslant \alpha_3$, alors : $|h(x)-\ell| \leqslant \varepsilon$. D'où :

$$\ell - \varepsilon \leqslant h(x) \leqslant \ell + \varepsilon$$

On en déduit, par transitivité :

$$\ell - \varepsilon \leqslant f(x) \leqslant g(x) \leqslant h(x) \leqslant \ell + \varepsilon$$

Ainsi : $|g(x) - \ell| \le \varepsilon$.

On a donc démontré :

$$\forall \varepsilon > 0, \ \exists \alpha_0 > 0, \ \forall x \in I, \ \left(|x - x_0| \leqslant \alpha_0 \ \Rightarrow \ \left| g(x) - \ell \right| \leqslant \varepsilon \right)$$

Autrement dit : $\lim_{x \to x_0} g(x) = \ell$.

• Un théorème de la limite monotone

Soit f une fonction monotone sur I =]a, b[(a < b).

(avec
$$a \in \mathbb{R} \cup \{-\infty\}$$
 et $b \in \mathbb{R} \cup \{+\infty\}$)

Alors f admet une limite dans $\mathbb{R} \cup \{-\infty, +\infty\}$ en b.

a) si
$$f$$
 est croissante sur I , $\lim_{x\to b} f(x) = \begin{cases} \sup_{x\in I} f(x) & \text{si } f \text{ est major\'ee} \\ +\infty & \text{sinon} \end{cases}$

b) si
$$f$$
 est décroissante sur I , $\lim_{x\to b} f(x) = \begin{cases} \inf_{x\in I} f(x) & \text{si } f \text{ est minorée} \\ -\infty & \text{sinon} \end{cases}$

 $D\'{e}monstration.$

On démontre seulement le cas a).

Supposons que f est croissante sur I. Deux cas se présentent.

• si_f_est_majorée, alors $M = \sup_{I} (f)$ existe. On rappelle qu'on a alors :

$$\times \ \forall x \in I, f(x) \leqslant M$$

$$\times \forall \varepsilon > 0, \exists u_0 \in I, M - \varepsilon < f(x)$$

Démontrons : $\lim_{x \to b} f(x) = M$. Autrement dit :

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x \in I, \ \left(b - \alpha \leqslant x < b \ \Rightarrow \ \left| f(x) - M \right| \leqslant \varepsilon \right)$$

Soit $\varepsilon > 0$. Soit $x \in I$.

- × Tout d'abord, par propriété du sup : $f(x) \leq M$.
- × Ensuite, toujours par propriété du sup, il existe $u_0 \in I$ tel que :

$$M - \varepsilon < f(u_0)$$

Or la fonction f est croissante sur I. Ainsi :

$$\forall x \geqslant u_0, \ f(x) \geqslant f(u_0) > M - \varepsilon$$

Autrement dit:

$$\forall x \in [u_0, b[, M - \varepsilon \leqslant f(x)]$$

On pose alors : $\alpha = b - u_0$. Notons qu'on a bien : $\alpha > 0$. En effet : $u_0 \in I =]a, b[$. Soit $x \in I$. Supposons : $b - \alpha \le x < b$. On obtient d'après les deux points précédents :

$$M - \varepsilon \leqslant f(x) \leqslant M$$

Par transitivité, on en déduit : $M - \varepsilon \leqslant f(x) \leqslant M \leqslant M + \varepsilon$. D'où :

$$|f(x) - M| \leq \varepsilon$$

On a bien démontré : $\lim_{x\to b} f(x) = M$.

 $\bullet \ \mbox{si} \ f$ n'est pas majorée.

Soit $A \in \mathbb{R}$.

Comme f non majorée, il existe $u_0 \in I$ tel que : $f(u_0) > A$. Comme f est croissante sur I, pour tout $x \in [u_0, b[$:

$$A < f(u) \leqslant f(x)$$

En notant $\alpha = b - u > 0$, on a donc :

$$\forall x \in I, (b - \alpha \leqslant x < b \implies f(x) > A)$$

Autrement dit : $\lim_{x \to b} f(x) = +\infty$.

Connaissances exigibles

Suites numériques

- Montonie, stationnarité d'une suite
- Majorant, minorant d'une suite
- Borne supérieure, borne inférieure d'une suite
- Maximum, minimum d'une suite
- Suite extraite
- Suites usuelles : arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre 2
- Suites convergentes :
 - × définition
 - x caractérisation avec la convergence de la partie réelle et imaginaire pour les suites complexes
 - × unicité de la limite
 - × toute suite convergente est bornée
 - × toute suite extraite d'une suite convergente est convergente
 - × propriété de recouvrement
 - × opérations sur les suites convergentes
 - × théorème de composition de limites
 - × compatibilité avec la relation d'ordre
 - × théorème d'encadrement
- Suites divergentes :
 - \times définition
 - \times suites divergeant vers $\pm \infty$

- \times toute suite divergeant vers $+\infty$ est positive à partir d'un certain rang (et l'équivalent en $-\infty$)
- × opérations et formes indéterminées
- × compatibilité avec la relation d'ordre
- × compatibilité avec la valeur absolue
- × théorème de composition de limites
- Théorèmes de convergence monotone
- Suites adjacentes : définition, théorème des suites adjacentes
- Étude de suites récurrentes
- Étude de suites implicites
- Équivalence, négligeabilité

Notion de limite

- Voisinages : voisinage d'un point, de $+\infty$ et de $-\infty$
- Définition de limite : en un point, en $+\infty$ et en $-\infty$
- Définition de limite à droite et limite à gauche
- Unicité de la limite
- Opérations sur les limites
- Caractérisation séquentielle de la limite. Application : démontrer qu'une fonction n'admet pas de limite en un point.
- Méthodes pour lever des formes indéterminées :
 - × factorisation par le terme dominant
 - × utilisation de la quantité conjuguée
 - imes retour à la définition des fonctions puissances avec les fonctions exp et ln
 - × changement de variable
 - × utilisation des croissances comparées
 - × utilisation des taux d'accroissements
- Compatibilité de la limite avec la relation d'ordre
- Théorème d'encadrement et de comparaison
- Théorème de la limite monotone

On sanctionnera fortement les points suivants :

- × toute confusion d'objets,
- × toute confusion variable libre / liée (ou muette),
- × tout oubli d'introduction de variable (cela rejoint le point précédent),
- × toute erreur de logique (absence ou erreur de connecteur logique par exemple),
- \times tout manque de réflexe dans l'utilisation des structures de démonstration.